Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulphuric acid solubility

Concentration of sulphuric acid %. . Solubility of nitroguanidine in 100 ml of acid ... [Pg.24]

A white, shining inetal in the form of foil, insoluble in hydrochloric and in cold dilute sulphuric acids soluble in nitric and in hot concentrated sulphuric acids. [Pg.186]

Solubility in concentrated sulphuric acid. Solubility in cold concentrated sulphuric acid is used to characterise further those compounds which by virtue of the results of the previous solubility tests are considered to be neutral. [Pg.1200]

Characters and Tests.—Thin, translucent, and colourless crystalline plates, of a pearly lustre, with a sharp unpleasant taste evolving acetic acid (recognisable by the characteristic odour of its vapour) when decomposed by sulphuric acid soluble in water, forming a solution which gives a white precipitate (zinc sulphide) with sulphuretted hydrogen. A dilute aqueous solution should not be aflected by barium chloride (showing the absence of sulphates), or by... [Pg.264]

On acetylation it gives acetanilide. Nitrated with some decomposition to a mixture of 2-and 4-nitroanilines. It is basic and gives water-soluble salts with mineral acids. Heating aniline sulphate at 190 C gives sulphanilic add. When heated with alkyl chlorides or aliphatic alcohols mono- and di-alkyl derivatives are obtained, e.g. dimethylaniline. Treatment with trichloroethylene gives phenylglycine. With glycerol and sulphuric acid (Skraup s reaction) quinoline is obtained, while quinaldine can be prepared by the reaction between aniline, paraldehyde and hydrochloric acid. [Pg.35]

C2He04S, Et0)(H0)S02. Oily acidic liquid. Soluble in water and slowly hydrolysed by it to ethanol and sulphuric acid. Prepared by passing ethene into concentrated sulphuric acid or by heating ethanol and sulphuric acid. Gives ethene when heated alone, and diethyl sulphate when heated with ethanol at 140 C. Forms crystalline metallic salts which are soluble in water. [Pg.168]

C, soluble in water and alcohol. It occurs in woad as the glucoside indican, and in mammalian urine, combined with sulphuric acid, as an ester, also called indican. It arises in the body from the bacterial decomposition of tryptophan. [Pg.216]

CH OfiSj, H2C(S03H)2- a colourless, crystalline solid which readily absorbs water vapour decomposes on distillation. The potassium salt is prepared by heating methylene chloride with an aqueous solution of potassium sulphite under pressure at 150-I60" C. The free acid is obtained by decomposing the sparingly soluble barium salt with sulphuric acid. The aryl esters are very stable, but the alkyl esters decompose on heating to give ethers. Resembles malonic acid in some of its reactions. [Pg.259]

The phthalocyanines must be suitably dis-p>ersed to be used as pigments or they can be sulphonated to water-soluble forms for dyeing and for precipitation as lakes. The dispersion is carried out by solution in sulphuric acid, followed by precipitation in water. [Pg.312]

Boron trioxide is not particularly soluble in water but it slowly dissolves to form both dioxo(HB02)(meta) and trioxo(H3B03) (ortho) boric acids. It is a dimorphous oxide and exists as either a glassy or a crystalline solid. Boron trioxide is an acidic oxide and combines with metal oxides and hydroxides to form borates, some of which have characteristic colours—a fact utilised in analysis as the "borax bead test , cf alumina p. 150. Boric acid. H3BO3. properly called trioxoboric acid, may be prepared by adding excess hydrochloric or sulphuric acid to a hot saturated solution of borax, sodium heptaoxotetraborate, Na2B407, when the only moderately soluble boric acid separates as white flaky crystals on cooling. Boric acid is a very weak monobasic acid it is, in fact, a Lewis acid since its acidity is due to an initial acceptance of a lone pair of electrons from water rather than direct proton donation as in the case of Lowry-Bronsted acids, i.e. [Pg.148]

Lead dioxide is slightly soluble in concentrated nitric acid and concentrated sulphuric acid, and it dissolves in fused alkalis. It therefore has amphoteric properties, although these are not well characteri.sed since it is relatively inert. [Pg.194]

Industrially. phosphoric(V) acid is manufactured by two processes. In one process phosphorus is burned in air and the phos-phorus(V) oxide produced is dissolved in water. It is also manufactured by the action of dilute sulphuric acid on bone-ash or phosphorite, i.e. calcium tetraoxophosphate(V). Ca3(P04)2 the insoluble calcium sulphate is filtered off and the remaining solution concentrated. In this reaction, the calcium phosphate may be treated to convert it to the more soluble dihydrogenphosphatc. CafHjPOjj. When mixed with the calcium sulphate this is used as a fertiliser under the name "superphosphate . [Pg.246]

Detergents are made by, for example, treating petroleum hydrocarbons with sulphuric acid, yielding sulphonated products which are water soluble. These can also solubilise fats and oils since, like the stearate ion, they have an oil-miscible hydrocarbon chain and a water-soluble ionic end. The calcium salts of these substances, however, are soiu u-ic in water and, therefore, remove hardness without scum formation. [Pg.273]

Sulphur trioxide is not very soluble in water but dissolves readily in concentrated sulphuric acid. [Pg.299]

This reaction is also used on a large scale, to obtain iodine from seaweed. The ash from burnt seaweed ( kelp ) is extracted with water, concentrated, and the salts other than iodides (sulphates and chlorides) crystallise out. The more soluble iodides remain and the liquor is mixed with sulphuric acid and manganese dioxide added the evolved iodine distils off and is condensed. [Pg.319]

Anhydrous titanium dioxide is only soluble with difficulty in hot concentrated sulphuric acid dilution allows the crystallisation of a sulphate of formula T10S04.H20, but it is doubtful if the titanyl cation TiO actually exists, either in solution or the solid. Certainly [TifHjOIn] does not exist, and solutions of titanyl salts may best be considered to contain ions [Ti(0H)2(H204)] . Titanium... [Pg.371]

A second preparation to illustrate sulphonation is that of sulphanilic acid, NH2C4H4SO3H, a highly crystalline substance which, having a low solubility in cold water, can be readily isolated. If aniline is treated with an excess of concentrated sulphuric acid, aniline hydrogen sulphate is first formed, and... [Pg.179]

To determine which halogen is present, take 1-2 ml. of the filtrate from the sodium fusion, and add dilute sulphuric acid until just acid to litmus. Add about 1 ml. of benzene and then about 1 ml. of chlorine water and shake. A yellowish-brown colour in the benzene indicates bromine, and a violet colour iodine. If neither colour appears, the halogen is chlorine. The result may be confirmed by testing the solubility of the silver halide (free from cyanide) in dilute ammonia solution silver chloride is readily soluble, whereas the bromide dissolves with difficulty, and the iodide not at all. [Pg.325]

Dilute hydrochloric or sulphuric acid finds application in the extraction of basic substances from mixtures or in the removal of basic impurities. The dilute acid converts the base e.g., ammonia, amines, etc.) into a water-soluble salt e.g., ammonium chloride, amine hydrochloride). Thus traces of aniline may be separated from impure acetanilide by shaking with dilute hydrochloric acid the aniline is converted into the soluble salt (aniline hydrochloride) whilst the acetanilide remains unaffected. [Pg.151]

Cold concentrated sulphuric acid will remove unsaturated hydrocarbons present in saturated hydrocarbons, or alcohols and ethers present in alkyl halides. In the former case soluble sulphonated products are formed, whilst in the latter case alkyl hydrogen sulphates or addition complexes, that are soluble in the concentrated acid, are produced. [Pg.151]

Cool 1 ml. of amylene in ice and add 1 ml. of cold, dilute sulphuric acid (2 acid 1 water), and shake gently until the mixture is homogeneous. Dilute with 2 ml. of water if an upper layer of the alcohol does not separate immediately, introduce a little sodium chloride into the mixture in order to decrease the solubility of the alcohol. Observe the odour. The unsaturated hydrocarbon is thus largely reconverted into the alcohol from which it may be prepared. [Pg.241]

Chakactkrisation of Unsaturatkd Aliphatic Hydrocarbons Unlike the saturated hydrocarbons, unsaturated aliphatic hydrocarbons are soluble in concentrated sulphuric acid and exhibit characteristic reactions with dUute potassium permanganate solution and with bromine. Nevertheless, no satisfactory derivatives have yet been developed for these hydrocarbons, and their characterisation must therefore be based upon a determination of their physical properties (boiling point, density and refractive index). The physical properties of a number of selected unsaturated hydrocarbons are collected in Table 111,11. [Pg.241]

This separation utilises the fact that n-butyl alcohol is soluble in 50 per cent, sulphuric acid by weight, whilst n-butyl ether is only slightly soluble. [Pg.313]

It is marketed as a 35-40 per cent, solution in water (formalin). The rpactions of formaldehyde are partly typical of aldehydes and partly peculiar to itself. By evaporating an aqueous solution paraformaldehyde or paraform (CHjO), an amorphous white solid is produced it is insoluble in most solvents. When formaldehyde is distilled from a 60 per cent, solution containing 2 per cent, of sulphuric acid, it pol5unerises to a crystalline trimeride, trioxane, which can be extracted with methylene chloride this is crystalline (m.p. 62°, b.p. 115°), readily soluble in water, alcohol and ether, and devoid of aldehydic properties ... [Pg.319]

Acetaldehyde, b.p. 21°, undergoes rapid pol5unerisation under the influence of a little sulphuric acid as catalyst to give the trimeride paraldehyde, a liquid b.p. 124°, which is sparingly soluble in water. The reaction is reversible, but attains equilibrium when the conversion is about 95 per cent, complete the unreacted acetaldehyde and the acid catalyst may be removed by washing with water ... [Pg.319]

P Keto esters (t.g., ethyl ocetoacetate) are soluble in solutions of caustic alkalis but not in sodium carbonate solution. They give colours with freshly prepared ferric chloride solution a little alcohol should be added to bring the ester into solution. Sodium ethoxide solution reacts to yield sodio compounds, which usually crystallise out in the cold. Phenylhydrazine yields pyrazolones. They are hydrolysed by boiling sulphuric acid to the Corresponding ketones, which can be identified as usual (Section 111,74). [Pg.392]

Aliphatic amides may be hydrolysed by boiling with 10 per cent, sodium hydroxide solution to the corresponding acid (as the sodium salt) the alkahne solution should be acidified with dilute sulphuric acid any water-soluble acid may then be distilled from the solution. Alternatively, hydrolysis may be eflfected with 10-20 per cent, sulphuric acid. The resulting ahphatic acid (usually a liquid) may be characterised as detailed in Section 111,85. [Pg.405]

Oxidation of side chains. Aromatic nitro compounds that contain a side chain (e.g., nitro derivatives of alkyl benzenes) may be oxidised to the corresponding acids either by alkahne potassium permanganate (Section IV,9, 6) or, preferably, with a sodium dichromate - sulphuric acid mixture in which medium the nitro compound is more soluble. [Pg.529]


See other pages where Sulphuric acid solubility is mentioned: [Pg.19]    [Pg.21]    [Pg.101]    [Pg.126]    [Pg.164]    [Pg.166]    [Pg.196]    [Pg.259]    [Pg.275]    [Pg.380]    [Pg.385]    [Pg.417]    [Pg.78]    [Pg.122]    [Pg.167]    [Pg.203]    [Pg.174]    [Pg.587]    [Pg.716]    [Pg.758]    [Pg.763]   
See also in sourсe #XX -- [ Pg.230 , Pg.235 , Pg.250 ]




SEARCH



Sulphur solubility

Sulphuric acid

Sulphurous acids

© 2024 chempedia.info