Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfur reaction with hydroxide

Pyridine reacts with sulfur trioxide to give the crystalline, zwitterionic pyridinium-1-sulfonate, usually known as the pyridine sulfur trioxide complex. This compound is hydrolysed in hot water to sulfuric acid and pyridine (for its reaction with hydroxide see 8.12.3), but more usefully it can serve as a mild sulfonat-ing agent (for examples see 16.1.1.3 and 18.1.1.3) and as an activating agent for dimethylsulfoxide in Moffat oxidations. [Pg.127]

The base-induced reaction of the symmetrical dipropanoic anhydride (15) illustrates the mechanism of base hydrolysis with anhydrides, in a reaction that gives two equivalents of propanoic acid. Acyl addition of the nucleophilic hydroxide gives tetrahedral intermediate 16. In this case, the best leaving group is the carboxylate anion 18, which gives propanoic acid, 17. Because 17 is formed in a basic solution, reaction with hydroxide gives 18. A second step is required to convert 17 to 18, using aqueous acid (aqueous sulfuric acid or aqueous HCl). [Pg.950]

Sodium reacts with dilute acids about as vigorously as it reacts with water. The reaction with concentrated sulfuric acid may be somewhat less vigorous. At 300—385°C, sodium and sodium hydroxide react according to the following equiUbrium ... [Pg.164]

Sulfur combines directly with hydrogen at 150—200°C to form hydrogen sulfide. Molten sulfur reacts with hydrogen to form hydrogen polysulfides. At red heat, sulfur and carbon unite to form carbon disulfide. This is a commercially important reaction in Europe, although natural gas is used to produce carbon disulfide in the United States. In aqueous solutions of alkaU carbonates and alkaU and alkaline-earth hydroxides, sulfur reacts to form sulfides, polysulfides, thiosulfates, and sulfites. [Pg.117]

Vinyl chloride reacts with sulfides, thiols, alcohols, and oximes in basic media. Reaction with hydrated sodium sulfide [1313-82-2] in a mixture of dimethyl sulfoxide [67-68-5] (DMSO) and potassium hydroxide [1310-58-3], KOH, yields divinyl sulfide [627-51-0] and sulfur-containing heterocycles (27). Various vinyl sulfides can be obtained by reacting vinyl chloride with thiols in the presence of base (28). Vinyl ethers are produced in similar fashion, from the reaction of vinyl chloride with alcohols in the presence of a strong base (29,30). A variety of pyrroles and indoles have also been prepared by reacting vinyl chloride with different ketoximes or oximes in a mixture of DMSO and KOH (31). [Pg.414]

Dithionites. Although the free-dithionous acid, H2S2O4, has never been isolated, the salts of the acid, in particular zinc [7779-86-4] and sodium dithionite [7775-14-6] have been prepared and are widely used as industrial reducing agents. The dithionite salts can be prepared by the reaction of sodium formate with sodium hydroxide and sulfur dioxide or by the reduction of sulfites, bisulfites, and sulfur dioxide with metallic substances such as zinc, iron, or zinc or sodium amalgams, or by electrolytic reduction (147). [Pg.149]

Anhydro-3-hydroxy-2-phenylthiazolo[2,3-6]thiazolylium hydroxide (407) underwent ready thermal reaction with alkynic and alkenic dipolarophiles in refluxing toluene. With the former dipolarophile sulfur was lost from the intermediate 1 1 cycloadduct (408) to give the substituted 5H-thiazolo[3,2- i]pyridin-5-ones (409). With the latter, the intermediate (410) lost H2S, also forming (409). [Pg.150]

The reaction of thiirane 1-oxides with water or methanol is usually acid-catalyzed and gives /3-substituted sulfenic acids which dimerize to thiolsulfinates (54 Scheme 70) (72JA5786). If acetic acid is used a mixture of disulfide (55) and thiolsulfonate (56) is obtained. Treatment of thiirane 1,1-dioxides with hydroxide ion may involve attack on carbon as well as on sulfur as exemplified by 2-phenylthiirane 1,1-dioxide (Scheme 71). [Pg.157]

The 3-carbethoxy-3 (1 -phenylpropyl)-4-oxo-dihydrocoumarin may be hydrolyzed and decar-boxylated as follows. The crude product is heated to 85°C for /a hour with 100 parts by volume of 5% aqueous sodium hydroxide, while agitating or stirring. To remove traces of undissolved oil, the cooled solution is treated with 1 part by weight of charcoal, whereupon it is filtrated and acidified to Congo reaction with dilute sulfuric acid. The 3-(1 -phenylpropyl)-4-hydroxycoumarin formed is separated off and recrystallized in 80% ethanol, whereupon it melts at 178°-179°C according to U.S. Patent 2,701,804. [Pg.1210]

A second major use of sulfuric acid of commerce is in reactions with bases. In laboratory use it is diluted to a much lower concentration and can be used as a standard acid. A typical problem would be the titration of a base solution of unknown concentration using a sulfuric acid solution of known concentration. For example, What is the concentration of a sodium hydroxide solution if 25.43 ml of the NaOH solution just reacts with 18.51 ml of 0.1250 M HiSOt (to produce a neutral solution) ... [Pg.230]

Nowhere, perhaps, is this phenomenon better illustrated than in the phenothiazine class. The earlier volume devoted a full chapter to the discussion of this important structural class, which was represented by both major tranquilizers and antihistamines. The lone phenothiazine below, flutiazin (130), in fact fails to show the activities characteristic of its class. Instead, the ring system is used as the aromatic nucleus for a nonsteroidal antiinflammatory agent. Preparation of 130 starts with formylation of the rather complex aniline 123. Reaction with alcoholic sodium hydroxide results in net overall transformation to the phenothiazine by the Smiles rearrangement. The sequence begins with formation of the anion on the amide nitrogen addition to the carbon bearing sulfur affords the corresponding transient spiro intermediate 126. Rearomatization... [Pg.430]

Thiocarbamate (tc, RHNCSO-) is a monodentate ambidentate ligand, and both oxygen- and sulfur-bonded forms are known for the simple pentaamminecobalt(III) complexes. These undergo redox reactions with chromium(II) ion in water via attack at the remote O or S atom of the S- and O-bound isomers respectively, with a structural trans effect suggested to direct the facile electron transfer in the former.1045 A cobalt-promoted synthesis utilizing the residual nucleophilicity of the coordinated hydroxide in [Co(NH3)5(OH)]2+ in reaction with MeNCS in (MeO)3PO solvent leads to the O-bonded monothiocarbamate, which isomerizes by an intramolecular mechanism to the S-bound isomer in water.1046... [Pg.93]

Elemental sulfur is present in most soils and sediments (especially anaerobic), and is sufficiently soluble in most common organic solvents that the extract should be treated to remove it prior to analysis by ECD-GC or GC-MS. The most effective methods available are (1) reaction with mercury or a mercury amalgam [466] to form mercury sulfide (2) reaction with copper to form copper sulfide or (3) reaction with sodium sulfite in tetrabutyl ammonium hydroxide (Jensen s reagent) [490]. Removal of sulfur with mercury or copper requires the metal surface to be clean and reactive. For small amounts of sulfur, it is possible to include the metal in a clean-up column. However, if the metal surface becomes covered with sulfide, the reaction will cease and it needs to be cleaned with dilute nitric acid. For larger amounts of sulfur, it is more effective to shake the extract with Jensen s reagent [478]. [Pg.68]

Barium hydroxide decomposes to barium oxide when heated to 800°C. Reaction with carbon dioxide gives barium carbonate. Its aqueous solution, being highly alkahne, undergoes neutrahzation reactions with acids. Thus, it forms barium sulfate and barium phosphate with sulfuric and phosphoric acids, respectively. Reaction with hydrogen sulfide produces barium sulfide. Precipitation of many insoluble, or less soluble barium salts, may result from double decomposition reaction when Ba(OH)2 aqueous solution is mixed with many solutions of other metal salts. [Pg.87]


See other pages where Sulfur reaction with hydroxide is mentioned: [Pg.887]    [Pg.887]    [Pg.72]    [Pg.887]    [Pg.887]    [Pg.214]    [Pg.277]    [Pg.472]    [Pg.169]    [Pg.216]    [Pg.23]    [Pg.303]    [Pg.267]    [Pg.2205]    [Pg.208]    [Pg.227]    [Pg.590]    [Pg.590]    [Pg.365]    [Pg.200]    [Pg.777]    [Pg.294]    [Pg.144]    [Pg.88]    [Pg.82]    [Pg.744]    [Pg.323]    [Pg.22]    [Pg.262]    [Pg.421]   
See also in sourсe #XX -- [ Pg.62 , Pg.92 ]




SEARCH



Aluminum hydroxide reaction with sulfuric acid

Hydroxide reaction with elemental sulfur

Hydroxides reactions

Hydroxides reactions with

Hydroxides sulfur

Sodium hydroxide reaction with sulfuric acid

Sulfur reaction with

© 2024 chempedia.info