Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alcohol reaction with sodium

The reaction with sodium is by no means an infallible practical test for alcohols since, strictly speaking, it is applicable only to pure anhydrous liquids. Traces of water, present as impurities, would give an initial evolution of hydrogen, but reaction would stop after a time if an alcohol is absent furthermore, certain esters and ketones also evolve hydrogen when treated with sodium (compare Section XI,7,6). It may, however, be assumed that if no hydrogen is evolved in the test, the substance is not an alcohol. [Pg.261]

The reaction with sodium sulfite or bisulfite (5,11) to yield sodium-P-sulfopropionamide [19298-89-6] (C3H7N04S-Na) is very useful since it can be used as a scavenger for acrylamide monomer. The reaction proceeds very rapidly even at room temperature, and the product has low toxicity. Reactions with phosphines and phosphine oxides have been studied (12), and the products are potentially useful because of thek fire retardant properties. Reactions with sulfide and dithiocarbamates proceed readily but have no appHcations (5). However, the reaction with mercaptide ions has been used for analytical purposes (13)). Water reacts with the amide group (5) to form hydrolysis products, and other hydroxy compounds, such as alcohols and phenols, react readily to form ether compounds. Primary aUphatic alcohols are the most reactive and the reactions are compHcated by partial hydrolysis of the amide groups by any water present. [Pg.133]

RO—CF=CF2, are obtained by reaction with sodium salts of alcohols (26). An osone—TFE reaction is accompanied by chemiluminescence (27). Dimerization at 600°C gives perfluorocyclobutane, C Fg further heating gives hexafluoropropylene, CF2=CFCF2, and eventually perfluoroisobutylene, CF2=C(CF2)2 (28). Purity is deterrnined by both gas—Hquid and gas—soHd chromatography the in spectmm is complex and therefore of no value. [Pg.349]

Nucleophilic Reactions. Useful nucleophilic substitutions of halothiophenes are readily achieved in copper-mediated reactions. Of particular note is the ready conversion of 3-bromoderivatives to the corresponding 3-chloroderivatives with copper(I)chloride in hot /V, /V- dim ethyl form am i de (26). High yields of alkoxythiophenes are obtained from bromo- and iodothiophenes on reaction with sodium alkoxide in the appropriate alcohol, and catalyzed by copper(II) oxide, a trace of potassium iodide, and in more recent years a phase-transfer catalyst (27). [Pg.20]

Reactions of the Side Chain. Benzyl chloride is hydrolyzed slowly by boiling water and more rapidly at elevated temperature and pressure in the presence of alkaHes (11). Reaction with aqueous sodium cyanide, preferably in the presence of a quaternary ammonium chloride, produces phenylacetonitrile [140-29-4] in high yield (12). The presence of a lower molecular-weight alcohol gives faster rates and higher yields. In the presence of suitable catalysts benzyl chloride reacts with carbon monoxide to produce phenylacetic acid [103-82-2] (13—15). With different catalyst systems in the presence of calcium hydroxide, double carbonylation to phenylpymvic acid [156-06-9] occurs (16). Benzyl esters are formed by heating benzyl chloride with the sodium salts of acids benzyl ethers by reaction with sodium alkoxides. The ease of ether formation is improved by the use of phase-transfer catalysts (17) (see Catalysis, phase-thansfer). [Pg.59]

Efaloform Reaetion. Ethyl alcohol reacts with sodium hypochlorite to give chloroform [67-66-3] (haloform reaction). [Pg.403]

Butyl alcohol in synthesis of phenyl 1-butyl ether, 46, 89 1-Butyl azidoacetate, 46, 47 hydrogenation of, 46, 47 1-Butyl chloroacetate, reaction with sodium azide, 46, 47 lre l-4-i-BUTYLCYCLOHEXANOL, 47,16 4-(-Butylcyclohexanonc, reduction with lithium aluminum hydride and aluminum chloride, 47, 17 1-Butyl hypochlorite, reaction with cy-clohexylamine, 46,17 l-Butylthiourea, 46, 72... [Pg.123]

Kimura and co-workers have synthesized a series of alkoxide complexes with the alcohol functionality as a pendent arm.447 674 737 A zinc complex of l-(4-bromophenacyl)-l, 4,7,10-tetraaza-cyclododecane was also synthesized by the same workers to mimic the active site of class II aldolases. The X-ray structure shows a six-coordinate zinc center with five donors from the ligand and a water molecule bound. The ketone is bound with a Zn—O distance of 2.159(3) A (Figure 12). Potentiometric titration indicated formation of a mixture of the hydroxide and the enolate. Enolate formation was also independently carried out by reaction with sodium methoxide, allowing full characterization.738... [Pg.1212]

The stereoselective total synthesis of (+)-epiquinamide 301 has been achieved starting from the amino acid L-allysine ethylene acetal, which was converted into piperidine 298 by standard protocols. Allylation of 297 via an. V-acyliminium ion gave 298, which underwent RCM to provide 299 and the quinolizidine 300, with the wrong stereochemistry at the C-l stereocenter. This was corrected by mesylation of the alcohol, followed by Sn2 reaction with sodium azide to give 301, which, upon saponification of the methyl ester and decarboxylation through the Barton procedure followed by reduction and N-acylation, gave the desired natural product (Scheme 66) <20050L4005>. [Pg.44]

The enhanced reactivity of 5-halogeno-l,2,4-thiadiazoles over 3-halogeno-l,2,4-thiadiazoles has been mentioned before (see Section 5.08.7.1). Nucleophilic substitution at this center is a common route to other 1,2,4-thiadiazoles, including 5-hydroxy, alkoxy, mercapto, alkylthio, amino, sulfonamido, hydrazino, hydroxylamino, and azido derivatives. Halogens in the 3-position of 1,2,4-thiadiazoles are inert toward most nucleophilic reagents, but displacement of the 3-halogen atom can be achieved by reaction with sodium alkoxide in the appropriate alcohol <1996CHEC-II(4)307>. [Pg.499]

A" 0-Butenolide, 46, 22 /-Butyl alcohol, in synthesis of phenyl /-butyl ether, 45, 89 reaction with sodium cyanate and trifluoroacetic acid, 48, 32 /-Butyl azidoacctatc, 46, 47 hydrogenation of, 45, 47 /-Butyl carbamate, 48,32 /-Butyl chloroacetate, reaction with sodium azide, 45, 47 /ra S-4-/-BuTYI,CYCLOHEXANOL, 47,16... [Pg.70]

Nickel(lll) oxide, prepared from a nickel(ii) salt and sodium hypochlorite, is used for the oxidation of alkanols in aqueous alkali [46]. Residual nickel(Ii) oxide can be re-activated by reaction with sodium hypochlorite. Nickel oxides have also long been used in the manufacture of the positive pole in the Edison nickel-iron rechargeable battery, now largely superseded by die lead-acid accumulator, and in the Jungner nickel-cadmium batteries used as button cells for calculators [47]. Here, prepared nickel oxide is pressed into a holding plate of perforated nickel. Such prepared plates of nickel(lli) oxide have been proposed as reagent for the oxidation, in alkaline solution, of secondary alcohols to ketones and primary alcohols to carboxylic acids [48]. Used plates can be regenerated by anodic oxidation. [Pg.269]

Diclofenac Diclofenac, 2-[(2,6-dichlorophenyl)-amino]-phenylacetic acid (3.2.42), is synthesized from 2-chIorobenzoic acid and 2,6-dichloroaniline. The reaction of these in the presence of sodium hydroxide and copper gives iV-(2,6-dichlorophenyl)anthranyIic acid (3.2.38), the carboxylic group of which undergoes reduction by lithium aluminum hydride. The resulting 2-[(2,6-dicholorphenyl)-amino]-benzyl alcohol (3.2.39) undergoes further chlorination by thionyl chloride into 2-[(2,6-dichlorophenyl)-amino]-ben-zylchloride (3.2.40) and further, upon reaction with sodium cyanide converts into... [Pg.46]

Two years later, the same group reported a formal synthesis of ellipticine (228) using 6-benzyl-6H-pyrido[4,3-f>]carbazole-5,ll-quinone (6-benzylellipticine quinone) (1241) as intermediate (716). The optimized conditions, reaction of 1.2 equivalents of 3-bromo-4-lithiopyridine (1238) with M-benzylindole-2,3-dicarboxylic anhydride (852) at —96°C, led regioselectively to the 2-acylindole-3-carboxylic acid 1233 in 42% yield. Compound 1233 was converted to the corresponding amide 1239 by treatment with oxalyl chloride, followed by diethylamine. The ketone 1239 was reduced to the corresponding alcohol 1240 by reaction with sodium borohydride. Reaction of the alcohol 1240 with f-butyllithium led to the desired 6-benzylellipticine quinone (1241), along with a debrominated alcohol 1242, in 40% and 19% yield, respectively. 6-Benzylellipticine quinone (1241) was transformed to 6-benzylellipticine (1243) in 38% yield by treatment with methyllithium, then hydroiodic acid, followed... [Pg.327]

Apart from reactions with sodium borohydride, which is frequently used in water or water-alcohol mixtures to selectively reduce ketones or aldehydes, water is rarely used in reductions because of chemical incompatibility with most reducing agents. Nevertheless, water was shown to influence these types of reactions. [Pg.164]

Halogen carriers, 533 Halogen compounds, reaction with alcoholic silver nitrate, 1059 reaction with sodium iodide in acetone, 1059, 1060 ... [Pg.1177]


See other pages where Alcohol reaction with sodium is mentioned: [Pg.21]    [Pg.282]    [Pg.21]    [Pg.282]    [Pg.261]    [Pg.745]    [Pg.139]    [Pg.162]    [Pg.745]    [Pg.401]    [Pg.261]    [Pg.68]    [Pg.76]    [Pg.64]    [Pg.73]    [Pg.255]    [Pg.420]    [Pg.330]    [Pg.133]    [Pg.255]    [Pg.261]    [Pg.37]    [Pg.752]    [Pg.7]    [Pg.369]    [Pg.1391]   
See also in sourсe #XX -- [ Pg.79 ]




SEARCH



Reaction with alcohols

Sodium alcohol

Sodium alcoholate

Sodium reaction with

Sodium with alcohols

© 2024 chempedia.info