Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfur dioxide temperature

This is an exothermic, reversible, homogeneous reaction taking place in a single liquid phase. The liquid butadiene feed contains 0.5 percent normal butane as an impurity. The sulfur dioxide is essentially pure. The mole ratio of sulfur dioxide to butadiene must be kept above 1 to prevent unwanted polymerization reactions. A value of 1.2 is assumed. The temperature in the process must be kept above 65°C to prevent crystallization of the butadiene sulfone but below lOO C to prevent its decomposition. The product must contain less than 0.5 wt% butadiene and less thM 0.3 wt% sulfur dioxide. [Pg.118]

Sulfur dioxide [7446-09-5] is formed as a result of sulfur oxidation, and hydrogen chloride is formed when chlorides from plastics compete with oxygen as an oxidant for hydrogen. Typically the sulfur is considered to react completely to form SO2, and the chlorine is treated as the preferred oxidant for hydrogen. In practice, however, significant fractions of sulfur do not oxidi2e completely, and at high temperatures some of the chlorine atoms may not form HCl. [Pg.58]

Formation of emissions from fluidised-bed combustion is considerably different from that associated with grate-fired systems. Flyash generation is a design parameter, and typically >90% of all soHds are removed from the system as flyash. SO2 and HCl are controlled by reactions with calcium in the bed, where the lime-stone fed to the bed first calcines to CaO and CO2, and then the lime reacts with sulfur dioxide and oxygen, or with hydrogen chloride, to form calcium sulfate and calcium chloride, respectively. SO2 and HCl capture rates of 70—90% are readily achieved with fluidi2ed beds. The limestone in the bed plus the very low combustion temperatures inhibit conversion of fuel N to NO. ... [Pg.58]

Several types of fluids are used as refrigerants in mechanical compression systems ammonia, halocarbon compounds, hydrocarbons, carbon dioxide, sulfur dioxide, and cryogenic fluids. A wide temperature range therefore is afforded. These fluids boil and condense isotherm ally. The optimum temperature or pressure at which each can be used can be deterrnined from the economics of the system. The optimum refrigerant can be deterrnined only... [Pg.508]

The furnace is constmcted with a steel shell lined with high temperature refractory (see Refractories). Refractory type and thickness are deterrnined by the particular need. Where combustion products include corrosive gases such as sulfur dioxide or hydrogen chloride, furnace shell temperatures are maintained above about 150—180°C to prevent condensation and corrosion on the inside carbon steel surfaces. Where corrosive gases are not present, insulation is sized to maintain a shell temperature below 60°C to protect personnel. [Pg.54]

High Temperature Corrosion. The rate of oxidation of magnesium adoys increases with time and temperature. Additions of berydium, cerium [7440-45-17, lanthanum [7439-91-0] or yttrium as adoying elements reduce the oxidation rate at elevated temperatures. Sulfur dioxide, ammonium fluoroborate [13826-83-0] as wed as sulfur hexafluoride inhibit oxidation at elevated temperatures. [Pg.334]

In a vacuum, uncoated molybdenum metal has an unlimited life at high temperatures. This is also tme under the vacuum-like conditions of outer space. Pure hydrogen, argon, and hehum atmospheres are completely inert to molybdenum at all temperatures, whereas water vapor, sulfur dioxide, and nitrous and nitric oxides have an oxidizing action at elevated temperatures. Molybdenum is relatively inert to carbon dioxide, ammonia, and nitrogen atmospheres up to about 1100°C a superficial nitride film may be formed at higher temperatures in the latter two gases. Hydrocarbons and carbon monoxide may carburize molybdenum at temperatures above 1100°C. [Pg.465]

Nickel sulfate also is made by the reaction of black nickel oxide and hot dilute sulfuric acid, or of dilute sulfuric acid and nickel carbonate. The reaction of nickel oxide and sulfuric acid has been studied and a reaction induction temperature of 49°C deterrnined (39). High purity nickel sulfate is made from the reaction of nickel carbonyl, sulfur dioxide, and oxygen in the gas phase at 100°C (40). Another method for the continuous manufacture of nickel sulfate is the gas-phase reaction of nickel carbonyl and nitric acid, recovering the soHd product in sulfuric acid, and continuously removing the soHd nickel sulfate from the acid mixture (41). In this last method, nickel carbonyl and sulfuric acid are fed into a closed-loop reactor. Nickel sulfate and carbon monoxide are produced the CO is thus recycled to form nickel carbonyl. [Pg.10]

It is apparent from these equations that significant quantities of sulfur dioxide are generated. For selenium, the reaction shown for oxidation of elemental selenium reverses itself at the lower temperatures employed for water scmbbing, thus regenerating sulfuric acid. The tellurium dioxide remains in the sulfated slimes. [Pg.329]

Selenium and precious metals can be removed selectively from the chlorination Hquor by reduction with sulfur dioxide. However, conditions of acidity, temperature, and a rate of reduction must be carefliUy controlled to avoid the formation of selenium monochloride, which reacts with elemental selenium already generated to form a tar-like substance. This tar gradually hardens to form an intractable mass which must be chipped from the reactor. Under proper conditions of precipitation, a selenium/precious metals product substantially free of other impurities can be obtained. Selenium can be recovered in a pure state by vacuum distillation, leaving behind a precious metals residue. [Pg.330]

Selenium trioxide, SeO, is white, crystalline, and hygroscopic. It can be prepared by the action of sulfur trioxide on potassium selenate or of phosphorous pentoxide on selenic acid. It forms selenic acid when dissolved in water. The pure trioxide is soluble in a number of organic solvents. A solution in Hquid sulfur dioxide is a selenonating agent. It is stable in very dry atmospheres at room temperature and on heating it decomposes first to selenium pentoxide [12293-89-9] and then to selenium dioxide. [Pg.333]

The diffusion process has not been designed to ensure sterility, although temperatures above 65°C significantly retard microbial activity. Sulfur dioxide, thiocarbamates, glutaraldehyde, sodium bisulfite, and chlorine dioxide are all used, occasionally disregarding their redox incompatibilities, to knock down or control infections. The most common addition point is to the water from the pulp presses as it is returned to the diffuser. Surfactants ate almost... [Pg.25]

Whereas sulfolane is relatively stable to about 220°C, above that temperature it starts to break down, presumably to sulfur dioxide and a polymeric material. Sulfolane, also stable in the presence of various chemical substances as shown in Table 2 (2), is relatively inert except toward sulfur and aluminum chloride. Despite this relative chemical inertness, sulfolane does undergo certain reactions, for example, halogenations, ting cleavage by alkah metals, ring additions catalyzed by alkah metals, reaction with Grignard reagents, and formation of weak chemical complexes. [Pg.68]

Lewis Acid Complexes. Sulfolane complexes with Lewis acids, such as boron trifluoride or phosphoms pentafluoride (17). For example, at room temperature, sulfolane and boron trifluoride combine in a 1 1 mole ratio with the evolution of heat to give a white, hygroscopic soHd which melts at 37°C. The reaction of sulfolane with methyl fluoride and antimony pentafluoride inhquid sulfur dioxide gives crystalline tetrahydro-l-methoxythiophenium-l-oxidehexafluoroantimonate, the first example of an alkoxysulfoxonium salt (18). [Pg.69]

Benzene. The reaction of sulfur trioxide and ben2ene in an inert solvent is very fast at low temperatures. Yields of 90% ben2enesulfonic acid can be expected. Increased yields of about 95% can be reali2ed when the solvent is sulfur dioxide. In contrast, the use of concentrated sulfuric acid causes the sulfonation reaction to reach reflux equiUbrium after almost 30 hours at only an 80% yield. The by-product is water, which dilutes the sulfuric acid estabhshing an equiUbrium. [Pg.79]

Preparation. Thiophosgene forms from the reaction of carbon tetrachloride with hydrogen sulfide, sulfur, or various sulfides at elevated temperatures. Of more preparative value is the reduction of trichi oromethanesulfenyl chloride [594-42-3] by various reducing agents, eg, tin and hydrochloric acid, staimous chloride, iron and acetic acid, phosphoms, copper, sulfur dioxide with iodine catalyst, or hydrogen sulfide over charcoal or sihca gel catalyst (42,43). [Pg.131]

Chemical Properties. The chemistry of the sulfur chlorides has been reviewed (141,142). Sulfur monochloride is stable at ambient temperature but undergoes exchange with dissolved sulfur at 100°C, indicating reversible dissociation. When distilled at its atmospheric boiling point, it undergoes some decomposition to the dichloride, but decomposition is avoided with distillation at ca 6.7 kPa (50 mm Hg). At above 300°C, substantial dissociation to S2 and CI2 occurs. Sulfur monochloride is noncombustible at ambient temperature, but at elevated temperatures it decomposes to chlorine and sulfur (137). The sulfur then is capable of burning to sulfur dioxide and a small proportion of sulfur trioxide. [Pg.137]

At present, thionyl chloride is produced commercially by the continuous reaction of sulfur dioxide (or sulfur trioxide) with sulfur monochloride (or sulfur dichloride) mixed with excess chlorine. The reaction is conducted in the gaseous phase at elevated temperature over activated carbon (178). Unreacted sulfur dioxide is mixed with the stoichiometric amount of chlorine and allowed to react at low temperature over activated carbon to form sulfuryl chloride, which is fed back to the main thionyl chloride reactor. [Pg.141]

Chemical Properties. The chemistry of sulfuryl chloride has been reviewed (170,172,195). It is stable at room temperature but readily dissociates to sulfur dioxide and chlorine when heated. The equiUbrium constant has the following values (194) ... [Pg.142]

Physical Properties. Sulfur dioxide [7446-09-5] SO2, is a colorless gas with a characteristic pungent, choking odor. Its physical and thermodynamic properties ate Hsted in Table 8. Heat capacity, vapor pressure, heat of vaporization, density, surface tension, viscosity, thermal conductivity, heat of formation, and free energy of formation as functions of temperature ate available (213), as is a detailed discussion of the sulfur dioxide—water system (215). [Pg.143]

Reduction of sulfur dioxide to sulfur includes an industrially important group of reactions (227). Hydrogen sulfide reduces sulfur dioxide even at ambient temperature in the presence of water, but in the dry state and in the absence of a catalyst, a temperature of ca 300°C is required. [Pg.144]

Orga.nic Chemistry. The organic chemistry of sulfur dioxide, particularly as it relates to food appHcations, has been discussed (246). Although no reaction takes place with saturated hydrocarbons at moderate temperatures, the simultaneous passage of sulfur dioxide and oxygen into an alkane in the presence of a free-radical initiator or ultraviolet light affords a sulfonic acid such as hexanesulfonic acid [13595-73-8]. This is the so-called sulfoxidation reaction (247) ... [Pg.144]


See other pages where Sulfur dioxide temperature is mentioned: [Pg.281]    [Pg.281]    [Pg.626]    [Pg.373]    [Pg.49]    [Pg.485]    [Pg.257]    [Pg.459]    [Pg.460]    [Pg.460]    [Pg.172]    [Pg.291]    [Pg.453]    [Pg.54]    [Pg.388]    [Pg.224]    [Pg.322]    [Pg.328]    [Pg.358]    [Pg.164]    [Pg.321]    [Pg.443]    [Pg.469]    [Pg.275]    [Pg.329]    [Pg.120]    [Pg.129]    [Pg.144]   
See also in sourсe #XX -- [ Pg.203 ]




SEARCH



Sulfur dioxide oxidation reactors temperature profiles

Sulfur dioxide oxidation temperature

Sulfur dioxide oxidation temperature changes

Sulfur dioxide temperature influence

© 2024 chempedia.info