Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfur, as catalyst

Sulfur, as catalyst, 17, 18 Sulfur chloride, 14, 36 Sulfur dioxide, 16, 3g... [Pg.102]

Bromination catalyst. In the bromination of paraldehyde to produce bromal, use of sulfur as catalyst increases the yield by 5-10% and causes no trouble in the workup. Paraldehyde is added over a period of about 4 hrs. to a mixture of bromine... [Pg.563]

Dinitrogen tetroxide is an effective Eriedel-Crafts nitrating agent (152) for aromatics in the presence of aluminum chloride, ferric chloride, or sulfuric acid (153). Dinitrogen pentoxide is a powerhil nitrating agent, even in the absence of catalysts, preferably in sulfuric acid solution (154). SoHd dinitrogen pentoxide is known to be the nitronium nitrate, (N02) (N02). The use of BE as catalyst has been reported (155). [Pg.561]

There are environmental concerns over the use of HE catalyst. The refining industry has taken steps to reduce the likelihood of an accidental release and to minimizp the environmental impact in the event of a release. As a result of these environmental concerns, most new units use sulfuric acid catalysts. [Pg.185]

In most of the nonmetaHurgical uses of molybdenum compounds the metal is coordinated by oxygen or sulfur ligands. Molybdenum nitrides, carbides, and sihcides are, however, coming under increasing study for various appHcations. Roughly 75% of all molybdenum compounds are used as catalysts in the petroleum and chemicals industries. [Pg.476]

In past years, metals in dilute sulfuric acid were used to produce the nascent hydrogen reductant (42). Today, the reducing agent is hydrogen in the presence of a catalyst. Nickel, preferably Raney nickel (34), chromium or molybdenum promoted nickel (43), or supported precious metals such as platinum or palladium (35,44) on activated carbon, or the oxides of these metals (36,45), are used as catalysts. Other catalysts have been suggested such as molybdenum and platinum sulfide (46,47), or a platinum—nithenium mixture (48). [Pg.311]

Rhenium oxides have been studied as catalyst materials in oxidation reactions of sulfur dioxide to sulfur trioxide, sulfite to sulfate, and nitrite to nitrate. There has been no commercial development in this area. These compounds have also been used as catalysts for reductions, but appear not to have exceptional properties. Rhenium sulfide catalysts have been used for hydrogenations of organic compounds, including benzene and styrene, and for dehydrogenation of alcohols to give aldehydes (qv) and ketones (qv). The significant property of these catalyst systems is that they are not poisoned by sulfur compounds. [Pg.164]

The esters of sahcyhc acid account for an increasing fraction of the sahcyhc acid produced, about 15% in the 1990s. Typically, the esters are commercially produced by esterification of sahcyhc acid with the appropriate alcohol using a strong mineral acid such as sulfuric as a catalyst. To complete the esterification, the excess alcohol and water are distilled away and recovered. The cmde product is further purified, generally by distillation. For the manufacture of higher esters of sahcyhc acid, transestetification of methyl sahcylate with the appropriate alcohol is the usual route of choice. However, another reaction method uses sodium sahcylate and the corresponding alkyl hahde to form the desired ester. [Pg.288]

Chemical Properties. MSA combines high acid strength with low molecular weight. Its pK (laser Raman spectroscopy) is —1.9, about twice the acid strength of HCl and half the strength of sulfuric acid. MSA finds use as catalyst for esterification, alkylation, and in the polymerisation and curing of coatings (402,404,405). The anhydrous acid is also usefijl as a solvent. [Pg.154]

Although gravimetric methods have been used traditionally for the determination of large amounts of tellurium, more accurate and convenient volumetric methods are favored. The oxidation of teUurium(IV) by ceric sulfate in hot sulfuric acid solution in the presence of chromic ion as catalyst affords a convenient volumetric method for the determination of tellurium (32). Selenium(IV) does not interfere if the sulfuric acid is less than 2 N in concentration. Excess ceric sulfate is added, the excess being titrated with ferrous ammonium sulfate using o-phenanthroline ferrous—sulfate as indicator. The ceric sulfate method is best appHed in tellurium-rich materials such as refined tellurium or tellurium compounds. [Pg.388]

When oxygen is used as the oxidant, a basic catalyst is required for the lighter thiols (31) and a transition metal co-catalyst may be required for the heavier thiols (32). Oxidation using sulfur as the oxidant requires a basic catalyst. [Pg.12]

ButylatedPhenols and Cresols. Butylated phenols and cresols, used primarily as oxidation inhibitors and chain terrninators, are manufactured by direct alkylation of the phenol using a wide variety of conditions and acid catalysts, including sulfuric acid, -toluenesulfonic acid, and sulfonic acid ion-exchange resins (110,111). By use of a small amount of catalyst and short residence times, the first-formed, ortho-alkylated products can be made to predominate. Eor the preparation of the 2,6-substituted products, aluminum phenoxides generated in situ from the phenol being alkylated are used as catalyst. Reaction conditions are controlled to minimise formation of the thermodynamically favored 4-substituted products (see Alkylphenols). The most commonly used is -/ fZ-butylphenol [98-54-4] for manufacture of phenoHc resins. The tert-huty group leaves only two rather than three active sites for condensation with formaldehyde and thus modifies the characteristics of the resin. [Pg.372]

With Formaldehyde. The sulfuric acid cataly2ed reaction of formaldehyde [50-00-0] with carbon monoxide and water to glycoHc acid [79-14-1] at 473 K and 70 MPa (700 atm) pressure was the first step in an early process to manufacture ethylene glycol [107-21-1]. A patent (58) has described the use of Hquid hydrogen fluoride as catalyst, enabling the reaction to be carried out at 298 K and 7 MPa (70 atm) (eq. 18). [Pg.52]

Zinc chloride is a Lewis acid catalyst that promotes cellulose esterification. However, because of the large quantities required, this type of catalyst would be uneconomical for commercial use. Other compounds such as titanium alkoxides, eg, tetrabutoxytitanium (80), sulfate salts containing cadmium, aluminum, and ammonium ions (81), sulfamic acid, and ammonium sulfate (82) have been reported as catalysts for cellulose acetate production. In general, they require reaction temperatures above 50°C for complete esterification. Relatively small amounts (<0.5%) of sulfuric acid combined with phosphoric acid (83), sulfonic acids, eg, methanesulfonic, or alkyl phosphites (84) have been reported as good acetylation catalysts, especially at reaction temperatures above 90°C. [Pg.253]

Solution Process. With the exception of fibrous triacetate, practically all cellulose acetate is manufactured by a solution process using sulfuric acid catalyst with acetic anhydride in an acetic acid solvent. An excellent description of this process is given (85). In the process (Fig. 8), cellulose (ca 400 kg) is treated with ca 1200 kg acetic anhydride in 1600 kg acetic acid solvent and 28—40 kg sulfuric acid (7—10% based on cellulose) as catalyst. During the exothermic reaction, the temperature is controlled at 40—45°C to minimize cellulose degradation. After the reaction solution becomes clear and fiber-free and the desired viscosity has been achieved, sufficient aqueous acetic acid (60—70% acid) is added to destroy the excess anhydride and provide 10—15% free water for hydrolysis. At this point, the sulfuric acid catalyst may be partially neutralized with calcium, magnesium, or sodium salts for better control of product molecular weight. [Pg.254]

Chlorination of OCT with chlorine at 90°C in the presence of L-type 2eohtes as catalyst reportedly gives a 56% yield of 2,5-dichlorotoluene (79). Pure 2,5-dichlorotoluene is also available from the Sandmeyer reaction on 2-amino-5-chlorotoluene. 3,4-Dichlorotoluene (l,2-dichloro-4-methylben2ene) is formed in up to 40% yield in the chlorination of PCT cataly2ed by metal sulfides or metal halide—sulfur compound cocatalyst systems (80). [Pg.55]

Benzotrichloride with zinc chloride as catalyst reacts with ethylene glycol to form 2-chloroethyl benzoate [7335-25-3] (35). Perchlorotoluene is formed by chlorination with a solution of sulfur monochloride and aluminum chloride in sulfuryl chloride (36). [Pg.59]

Hydrogen cyanide (HCN) and aliphatic nittiles (RCN) can be used to form imidazolines. For example, EDA and HCN form 2-imidazoline (38). In the presence of sulfur or polysulfides as catalysts, 2-aIkyl-2-imidazolines can be prepared from ahphatic nitriles and EDA (39,40). [Pg.43]

The initial sulfur copolymer that is formed is often high conversion and gelled. Molecular weight is reduced to the required level by cleaving some of the polysulfide Linkages, usually with tetraethylthiuram disulfide. An alkaU metal or ammonium salt (30) of the dithiocarbamate, an alkaU metal salt of mercaptobensothiasole (31), and a secondary amine (32) have all been used as catalysts. The peptization reaction results in reactive chain ends. Polymer peptized with diphenyl tetrasulfide was reported to have improved viscosity stabiUty (33). [Pg.539]

In a study of the kinetics of the reaction of 1-butanol with acetic acid at 0—120°C, an empirical equation was developed that permits estimation of the value of the rate constant with a deviation of 15.3% from the molar ratio of reactants, catalyst concentration, and temperature (30). This study was conducted usiag sulfuric acid as catalyst with a mole ratio of 1-butanol to acetic acid of 3 19.6, and a catalyst concentration of 0—0.14 wt %. [Pg.375]

Alkyl tertiary alkyl ethers can be prepared by the addition of an alcohol or phenol to a tertiary olefin under acid catalysis (Reycler reaction) sulfuric acid, phosphoric acid, hydrochloric acid, and boron trifluoride have all been used as catalysts ... [Pg.426]


See other pages where Sulfur, as catalyst is mentioned: [Pg.295]    [Pg.885]    [Pg.374]    [Pg.308]    [Pg.251]    [Pg.506]    [Pg.95]    [Pg.106]    [Pg.77]    [Pg.95]    [Pg.134]    [Pg.148]    [Pg.172]    [Pg.455]    [Pg.90]    [Pg.102]    [Pg.251]    [Pg.252]    [Pg.253]    [Pg.514]    [Pg.280]    [Pg.384]    [Pg.389]    [Pg.508]   
See also in sourсe #XX -- [ Pg.17 , Pg.18 ]

See also in sourсe #XX -- [ Pg.17 , Pg.18 ]

See also in sourсe #XX -- [ Pg.17 , Pg.18 ]




SEARCH



A (sulfur

Catalyst sulfur

Sulfuric acid as catalyst

Sulfuric acid as catalyst for

© 2024 chempedia.info