Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfide reactivity

A second major type of reactor involves thermal destruction of the calcium carbide. At about 1,S00°F, both calcium carbide and acetylene are thermally oxidized. Therefore, a system such as a rotary kiln could be used for thermal destruction of the reactivity characteristics. The additional benefit of thermal destruction is that it will also effectively deal with potential sulfide reactivity problems. Large chunks of metals often included in the desulfurization slag will tend to be a problem for many types of thermal units. Concern over air emissions and cost are other hurdles to the use of thermal systems for calcium carbide desulfurization slag. [Pg.232]

FeS can still be found in such environments because of an insufficient supply of an oxidant to react with sulfide. This insufficiency may happen when either no sulfide-reactive iron exists or the rate of reoxidation of (mi-... [Pg.383]

Group 12 elements are found in nature as sulfides. Reactivity and electropositive character is much less than in group 2, especially for mercury. [Pg.247]

Significantly, NT dithiolenes have been shown to be effective for the electrochemical separation of alkenes from complex streams. No poisoning was observed with common impurities including hydrogen, carbon monoxide, acetylene, or hydrogen sulfide. Reactivity of these complexes occurs via... [Pg.2877]

The problem of the synthesis of highly substituted olefins from ketones according to this principle was solved by D.H.R. Barton. The ketones are first connected to azines by hydrazine and secondly treated with hydrogen sulfide to yield 1,3,4-thiadiazolidines. In this heterocycle the substituents of the prospective olefin are too far from each other to produce problems. Mild oxidation of the hydrazine nitrogens produces d -l,3,4-thiadiazolines. The decisive step of carbon-carbon bond formation is achieved in a thermal reaction a nitrogen molecule is cleaved off and the biradical formed recombines immediately since its two reactive centers are hold together by the sulfur atom. The thiirane (episulfide) can be finally desulfurized by phosphines or phosphites, and the desired olefin is formed. With very large substituents the 1,3,4-thiadiazolidines do not form with hydrazine. In such cases, however, direct thiadiazoline formation from thiones and diazo compounds is often possible, or a thermal reaction between alkylideneazinophosphoranes and thiones may be successful (D.H.R. Barton, 1972, 1974, 1975). [Pg.35]

Nucleophilic reactivity of exocyclic sulfur appears in acidic medium. 2-AryI thiazolyl sulfones are obtained from the corresponding sulfides by oxidation with HjO- in HOAc at 100°C (272). The same oxidation takes place with alkyl sulfides (203. 214, 273-275) and dithiazolylsulfides (129). However, the same reaction with 2-benzylthio derivatives gives benzylal-cohol and the related A-4-thiazoline-2-thione (169). [Pg.405]

Hydroxy-THISs react with electron-deficient alkynes to give nonisol-able adducts that extrude carbonyl sulfide, affording pyrroles (23). Compound 16 (X = 0) seems particularly reactive (Scheme 16) (25). The cycloaddition to benzyne yields isoindoles in low- yield. Further cyclo-addition between isoindole and benzyne leads to an iminoanthracene as the main product (Scheme 17). The cycloadducts derived from electron-deficient alkenes are stable (23, 25) unless highly strained. Thus the two adducts, 18a (R = H, R = COOMe) and 18b (R = COOMe, R = H), formed from 7, both extrude furan and COS under the reaction conditions producing the pyrroles (19. R = H or COOMe) (Scheme 18). Similarly, the cycloadduct formed between 16 (X = 0) and dimethylfumarate... [Pg.9]

The higher reactivity of 2-halogenothiazoles with respect to halogenopyridines can be related to the different aromaticity of the two systems, less for thiazole than for pyridine, for example, the relatively stronger fixation of the tt bond in the thiazole than in the case of pyridine. As the data reported in Table V-1 (footnote a) indicates, the free thiophenol is more reactive than the thiolate anion toward the 2-halogenothiazoles. This fact should be considered when one prepares the thiazolyl sulfides. [Pg.568]

The reaction with sodium sulfite or bisulfite (5,11) to yield sodium-P-sulfopropionamide [19298-89-6] (C3H7N04S-Na) is very useful since it can be used as a scavenger for acrylamide monomer. The reaction proceeds very rapidly even at room temperature, and the product has low toxicity. Reactions with phosphines and phosphine oxides have been studied (12), and the products are potentially useful because of thek fire retardant properties. Reactions with sulfide and dithiocarbamates proceed readily but have no appHcations (5). However, the reaction with mercaptide ions has been used for analytical purposes (13)). Water reacts with the amide group (5) to form hydrolysis products, and other hydroxy compounds, such as alcohols and phenols, react readily to form ether compounds. Primary aUphatic alcohols are the most reactive and the reactions are compHcated by partial hydrolysis of the amide groups by any water present. [Pg.133]

Retardation of the reaction rate by the addition of dimethyl sulfide is in accord with this mechanism. Borane—amine complexes and the dibromoborane—dimethyl sulfide complex react similarly (43). Dimeric diaLkylboranes initially dissociate (at rate to the monomers subsequentiy reacting with an olefin at rate (44). For highly reactive olefins > k - (recombination) and the reaction is first-order in the dimer. For slowly reacting olefins k - > and the reaction shows 0.5 order in the dimer. [Pg.309]

The products are Hquids, soluble in various solvents and stable over prolonged periods. Monochloroborane is an equiUbtium mixture containing small amounts of borane and dichloroborane complexes with dimethyl sulfide (81). Monobromoborane—dimethyl sulfide complex shows high purity (82,83). Solutions of monochloroborane in tetrahydrofuran and diethyl ether can also be prepared. Strong complexation renders hydroboration with monochloroborane in tetrahydrofuran sluggish and inconvenient. Monochloroborane solutions in less complexing diethyl ether, an equiUbtium with small amounts of borane and dichloroborane, show excellent reactivity (88,89). Monochloroborane—diethyl etherate [36594-41-9] (10) may be represented as H2BCI O... [Pg.310]

Dibromoborane—dimethyl sulfide is a more convenient reagent. It reacts directly with alkenes and alkynes to give the corresponding alkyl- and alkenyldibromoboranes (120—123). Dibromoborane differentiates between alkenes and alkynes hydroborating internal alkynes preferentially to terminal double and triple bonds (123). Unlike other substituted boranes it is more reactive toward 1,1-disubstituted than monosubstituted alkenes (124). [Pg.311]

The different forms of lead have different bioavailabiUty and this ultimately impacts cleanup levels. Mine tailings, slag, and other such residues have limited impact on blood lead levels because these materials contain lead in the form of lead sulfide, which has limited biological reactivity and uptake. [Pg.53]

The red tetrathiomolybdate ion appears to be a principal participant in the biological Cu—Mo antagonism and is reactive toward other transition-metal ions to produce a wide variety of heteronuclear transition-metal sulfide complexes and clusters (13,14). For example, tetrathiomolybdate serves as a bidentate ligand for Co, forming Co(MoSTetrathiomolybdates and their mixed metal complexes are of interest as catalyst precursors for the hydrotreating of petroleum (qv) (15) and the hydroHquefaction of coal (see Coal conversion processes) (16). The intermediate forms MoOS Mo02S 2> MoO S have also been prepared (17). [Pg.470]

Phosphorus compounds exhibit an enormous variety of chemical and physical properties as a result of the wide range ia the oxidation states and coordination numbers for the phosphoms atom. The most commonly encountered phosphoms compounds are the oxide, haUde, sulfide, hydride, nitrogen, metal, and organic derivatives, all of which are of iadustrial importance. The hahde, hydride, and metal derivatives, and to a lesser extent the oxides and sulfides, are reactive iatermediates for forming phosphoms bonds with other elements. Phosphoms-containing compounds represented about 6—7% of the compound hstiugs ia Chemical Abstracts as of 1993 (1). [Pg.356]

In the presence of sulfide or sulfhydryl anions, the quinonemethide is attacked and a benzyl thiol formed. The P-aryl ether linkage to the next phenylpropane unit is broken down as a result of neighboring-group attack by the sulfur, eliminating the aryloxy group which becomes reactive phenolate ion (eq. 2). If sulfide is not present, a principal reaction is the formation of the stable aryl enol ether, ArCH=CHOAr. A smaller amount of this product also forms in the presence of sulfhydryl anion. [Pg.261]

In the electromotive force series of the elements, silver is less noble than only Pd, Hg, Pt, and Au. AH provide high corrosion resistance. Silver caimot form oxides under ambient conditions. Its highly reactive character, however, results in the formation of black sulfides on exposure to sulfur-containing atmospheres. [Pg.82]

Sulfur Polymer Cement. SPC has been proven effective in reducing leach rates of reactive heavy metals to the extent that some wastes can be managed solely as low level waste (LLW). When SPC is combined with mercury and lead oxides (both toxic metals), it interacts chemically to form mercury sulfide, HgS, and lead sulfide, PbS, both of which are insoluble in water. A dried sulfur residue from petroleum refining that contained 600-ppm vanadium (a carcinogen) was chemically modified using dicyclopentadiene and oligomer of cyclopentadiene and used to make SC (58). This material was examined by the California Department of Health Services (Cal EPA) and the leachable level of vanadium had been reduced to 8.3 ppm, well below the soluble threshold limit concentration of 24 ppm (59). [Pg.126]

Generally, unsaturated compounds, eg, alkenes and natural fats and their derivatives, are much more reactive toward sulfur than alkanes. Sulfur reacts with unsaturated compounds at temperatures of 120—215°C, forming products that are usually dark and often viscous cross-linked mixtures of dithiole-3-thiones (eq. 4) (2) and sulfides (Table 1) (3). [Pg.206]

Diorganotin sulfides can be prepared from the chlorides or oxides by the exchange of a reactive substituent for sulfur ... [Pg.72]

Vinyllithium [917-57-7] can be formed direcdy from vinyl chloride by means of a lithium [7439-93-2] dispersion containing 2 wt % sodium [7440-23-5] at 0—10°C. This compound is a reactive intermediate for the formation of vinyl alcohols from aldehydes, vinyl ketones from organic acids, vinyl sulfides from disulfides, and monosubstituted alkenes from organic halides. It can also be converted to vinylcopper [37616-22-1] or divinylcopper lithium [22903-99-7], which can then be used to introduce a vinyl group stereoselectively into a variety of a, P-unsaturated systems (26), or simply add a vinyl group to other a, P-unsaturated compounds to give y, 5-unsaturated compounds. Vinyllithium reagents can also be converted to secondary alcohols with trialkylb o r ane s. [Pg.414]

Silica. The siUca content of natural waters is usually 10 to (5 x lO " ) M. Its presence is considered undesirable for some industrial purposes because of the formation of siUca and siUcate scales. The heteropoly-blue method is used for the measurement of siUca. The sample reacts with ammonium molybdate at pH 1.2, and oxaUc acid is added to reduce any molybdophosphoric acid produced. The yellow molybdosiUcic acid is then reduced with l-amino-2-naphthol-4-sulfoiiic acid and sodium sulfite to heteropoly blue. Color, turbidity, sulfide, and large amounts of iron are possible interferences. A digestion step involving NaHCO can be used to convert any molybdate-unreactive siUca to the reactive form. SiUca can also be deterrnined by atomic... [Pg.231]

Barium reduces the oxides, haUdes, and sulfides of most of the less reactive metals, thereby producing the corresponding metal. It has reportedly been used to prepare metallic americium via reduction of americium trifluoride (13). However, calcium metal can, in most cases, be used for similar purposes and is usually preferred over barium because of lower cost per equivalent weight and nontoxicity (see Actinides and transactinides). [Pg.472]


See other pages where Sulfide reactivity is mentioned: [Pg.93]    [Pg.340]    [Pg.232]    [Pg.384]    [Pg.2786]    [Pg.52]    [Pg.2785]    [Pg.450]    [Pg.272]    [Pg.93]    [Pg.340]    [Pg.232]    [Pg.384]    [Pg.2786]    [Pg.52]    [Pg.2785]    [Pg.450]    [Pg.272]    [Pg.305]    [Pg.346]    [Pg.14]    [Pg.454]    [Pg.172]    [Pg.551]    [Pg.311]    [Pg.438]    [Pg.506]    [Pg.179]    [Pg.364]    [Pg.164]    [Pg.117]    [Pg.207]    [Pg.336]    [Pg.586]   
See also in sourсe #XX -- [ Pg.177 ]




SEARCH



© 2024 chempedia.info