Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enol ethers arylation

Tin enolates of ketones can be generated by the reaction of the enol acetate 733 with tributyltin methoxide[60i] and they react with alkenyl halides via transmetallation to give 734. This reaction offers a useful method for the introduction of an aryl or alkenyl group at the o-carbon of ketones[602]. Tin enolates are also generated by the reaction of siiyl enol ethers with tributyltin fluoride and used for coupling with halides[603]. [Pg.237]

In the presence of sulfide or sulfhydryl anions, the quinonemethide is attacked and a benzyl thiol formed. The P-aryl ether linkage to the next phenylpropane unit is broken down as a result of neighboring-group attack by the sulfur, eliminating the aryloxy group which becomes reactive phenolate ion (eq. 2). If sulfide is not present, a principal reaction is the formation of the stable aryl enol ether, ArCH=CHOAr. A smaller amount of this product also forms in the presence of sulfhydryl anion. [Pg.261]

In 1959 Carboni and Lindsay first reported the cycloaddition reaction between 1,2,4,5-tetrazines and alkynes or alkenes (59JA4342) and this reaction type has become a useful synthetic approach to pyridazines. In general, the reaction proceeds between 1,2,4,5-tetrazines with strongly electrophilic substituents at positions 3 and 6 (alkoxycarbonyl, carboxamido, trifluoromethyl, aryl, heteroaryl, etc.) and a variety of alkenes and alkynes, enol ethers, ketene acetals, enol esters, enamines (78HC(33)1073) or even with aldehydes and ketones (79JOC629). With alkenes 1,4-dihydropyridazines (172) are first formed, which in most cases are not isolated but are oxidized further to pyridazines (173). These are obtained directly from alkynes which are, however, less reactive in these cycloaddition reactions. In general, the overall reaction which is presented in Scheme 96 is strongly... [Pg.50]

Alkyl aryl ethers and enol ethers are also accessible by the Mitsunobu method. Cyclic ethers can be obtained by an intramolecular variant, which is especially suitable for the synthesis of three- to seven-membered rings ... [Pg.206]

Enolizable compounds can be used for Meerwein reactions provided that the keto-enol equilibrium is not too far on the side of the ketone for example, P-dicar-bonyl compounds such as acetylacetone are suitable (Citterio and Ferrario, 1983). The arylation of enol esters or ethers (10.12) affords a convenient route for arylating aldehydes and ketones at the a-carbon atom (Scheme 10-48). Silyl enol ethers [10.12, R = Si(CH3)3] can be used instead of enol ethers (Sakakura et al., 1985). The reaction is carried out in pyridine. [Pg.246]

Diazonium salts react with oximes to give aryl oximes, which are easily hydrolyzed to aldehydes (R = H) or ketones." A copper sulfate-sodium sulfite catalyst is essential. In most cases higher yields (40-60%) are obtained when the reaction is used for aldehydes than for ketones. In another method for achieving the conversion ArNj —> ArCOR, diazonium salts are treated with R4Sn and CO with palladium acetate as catalyst. In a different kind of reaction, silyl enol ethers of aryl ketones, Ar C(OSiMe3)=CHR, react with sohd diazonium fluoroborates, ArNj BF4, to give ketones, ArCHRCOAr. " This is, in effect, an arylation of the aryl ketone. [Pg.938]

Conditions for arylation of enolate equivalents have also been developed. In the presence of ZnF2, silyl enol ethers, silyl ketene acetals, and similar compounds react. For example, the TMS derivatives of /V-acyl oxazolidinones can be arylated. [Pg.730]

Catalyst performance was far superior to the corresponding BINAP or Me-Du-Phos systems, with both conversions and selectivities being higher. The hydrogenation of enol ethers using Rh-PennPhos catalysts has been reported in a patent by Zhang [67d]. Under mild conditions, high enantioselectivities were obtained (73-94% ee) for 1-aryl-l-methoxy-ethene derivatives 121, compared to Me-DuPhos (40-73% ee) and BINAP (46-48% ee). [Pg.818]

A different approach towards titanium-mediated allene synthesis was used by Hayashi et al. [55], who recently reported rhodium-catalyzed enantioselective 1,6-addition reactions of aryltitanate reagents to 3-alkynyl-2-cycloalkenones 180 (Scheme 2.57). In the presence of chlorotrimethylsilane and (R)-segphos as chiral ligand, alle-nic silyl enol ethers 181 were obtained with good to excellent enantioselectivities and these can be converted further into allenic enol esters or triflates. In contrast to the corresponding copper-mediated 1,6-addition reactions (Section 2.2.2), these transformations probably proceed via alkenylrhodium species (formed by insertion of the C-C triple bond into a rhodium-aryl bond) and subsequent isomerization towards the thermodynamically more stable oxa-jt-allylrhodium intermediates [55],... [Pg.82]

Method D TBA-F (26 mg, 0.1 mmol) is added to Me,SiSiMe, (0.2 g, 1.5 mmol) in HMPA (2 ml) and the solution is stirred for 5 min at room temperature. The solution is then added to the aldehyde and the mixture is stirred for 4-5 h. On completion of the reaction, HChMeOH (1 10, 1 ml) is added and the mixture is extracted with Et20 (3 x 35 ml). The extracts are washed with aqueous NH4C1 (sat. soln. 25 ml) and brine (25 ml), and concentrated under vacuum. Chromatography from silica gives the trimethylsilyl enol ether or, in the ease of the aryl aldehydes, the pinacol. [Pg.77]

Trimethylsilylation of enolizable carbonyl compounds and alcohols has also been accomplished by the fluoride ion promoted reaction with hexamethyldisilane and ethyl trimethylsilylacetate [48, 49], with high stereospecificity giving Z-enol ethers from ketones [50]. l-Trimethylsilyl-(l-trimethylsilyloxy)alkanes, produced from the reaction of aldehydes with hexamethyldisilane, undergo acid-catalysed hydrolysis during work up to yield the trimethylsilylcarbinols [51]. In the case of aryl aldehydes, the initially formed trimethylsiloxy carbanion produces the pinacol (Scheme 3.1). [Pg.77]

The aryl aldehyde (1.1 mmol) and trimethylsilyl enol ether (1 mmol) are added sequentially to TBA-F (16 mg, 0.06 mmol) in THF (2 ml) at -78°C. The mixture is stirred at -78°C for 3-5 h, then warmed to room temperature, and H,0 (25 ml) is added. The aqueous mixture is extracted with Et,0 (3x15 ml) and the dried (MgS04) extracts are fractionally distilled to yield the aldol product (e.g. from PhCHO and 1-trimethylsilyl-oxycyclohexene, 84%, 6-methyl- 1-trimethylsilyloxycyclohexene, 68% 1 -trimethylsilyl-oxycycloheptene, 80%, 3-trimethylsilyloxypent-2-ene, 70%]. [Pg.261]

As one might expect, the mesomeric effect of an alkoxy group enhances the activity of the C=C to attack by the carbene, but it has been noted that, where there is competition between an alkoxyvinyl group and an inactivated alkene group within the same molecule, an alkyl or aryl group stabilizes the transition state better than does the vinyloxy group (Scheme 7.10) [56]. It is noteworthy that vinyl sulphides are five times more reactive than are the enol ethers [62]. [Pg.326]

On the other hand, the use of [Rh(CO)2Cl]2 as a catalyst results in ring opening of the siloxycyclopropanes 13 to the silyl enol ethers 14 with high stereoselectivity [10]. The 2-siloxyrhodacyclobutane 15a is proposed to undergo j8-elimination to give jr-allylrhodium 16a followed by reductive elimination to the silyl enol ether 14a. 1-Trimethylsiloxybicyclo[n.l.0]alkanes serve as / -metallo-carbonyl compounds via desilylation with a variety of transition metals [11]. The palladium-catalyzed reaction of the siloxycyclopropanes 17 under carbon monoxide in chloroform provides a route to the 4-keto pimelates 18. In the presence of aryl triflates, the 1,4-dicarbonyl compounds 19 are... [Pg.102]

Different nucleophiles such as methanol, allylsilanes, silyl enol ethers, trimethylsilyl-cyanide, and arenes can be used in this process [62]. When the sulfide itself contains an unsaturated or aromatic fragment and the process is carried out in the absence of a nucleophile, an intramolecular anodic sub-stitution/cyclization might occur [61-63]. Methyl esters of 2-benzothiazolyl-2-alkyl or aryl-acetic acid, oxidized in MeOH/Et4 NCIO4 or H2SO4 in the presence of CUCI2, form 2,2-dimethoxy products (Eq. 7) [64]. [Pg.243]

Inverse type hetero-Diels-Alder reactions between p-acyloxy-a-phenylthio substituted a, p-unsaturated cabonyl compounds as 1-oxa-1,3-dienes, enol ethers, a-alkoxy acrylates, and styrenes, respectively, as hetero-dienophiles result in an efficient one step synthesis of highly functionalized 3,4-dihydro-2H-pyrans (hex-4-enopyranosides). These compounds are diastereospecifically transformed into deoxy and amino-deoxy sugars such as the antibiotic ramulosin, in pyridines having a variety of electron donating substituents, in the important 3-deoxy-2-gly-culosonates, in precursors for macrolide synthesis, and in C.-aryl-glucopyranosides. [Pg.182]

MeOC6H4, respectively. The titanium enolates were converted into silyl enol ethers 54 by treatment with chlorotrimethylsilane and lithium isopropoxide. Additionally, cyclic enones lb and Ic, and linear enones Id and le, are also good substrates for the asymmetric conjugate addition of phenyltitanium triisopropoxide, giving the corresponding arylation products with over 97% enantioselectivity. [Pg.73]

Kamal A, Prasad BR, Khan MNA (2007) TMSCl-Nal-mediated reaction of aryl azides with cyclic enol ethers an efficient one-pot synthesis of 1,2,3,4-tetrahydroquinolines. J Mol Catal A Che 274 133-136... [Pg.65]


See other pages where Enol ethers arylation is mentioned: [Pg.57]    [Pg.183]    [Pg.99]    [Pg.1027]    [Pg.320]    [Pg.4]    [Pg.109]    [Pg.15]    [Pg.177]    [Pg.395]    [Pg.784]    [Pg.184]    [Pg.226]    [Pg.73]    [Pg.74]    [Pg.75]    [Pg.10]    [Pg.473]    [Pg.199]    [Pg.34]    [Pg.79]    [Pg.448]    [Pg.35]    [Pg.283]    [Pg.133]    [Pg.76]    [Pg.106]   
See also in sourсe #XX -- [ Pg.286 ]




SEARCH



Aryl ethers

Aryl silyl enol ethers

Arylations enolates

Enolates arylation

Silyl enol ethers with aryl Grignard reagents

© 2024 chempedia.info