Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

SUBJECTS salt

Henry and Besser (Ref) report that the salt is less effective as a propint burning rate booster than the parent acid, although it still yields faster burning pro pints than similar formulations using Nitroguanidine. The cool proplnt formulation used as an evaluation vehicle consisted of NC (29.84), NG (7.86), l-ethyl-5-ethylamino-tetrazole (7.50), and the subject salt (54.80%) Ref R.A. Henry E.D. Besser, Preparation and Preliminary Evaluation of 1 -(5-Tetrazolyl)-2-Nitroguanidine and its Guanidinium Salt , NAVORD 3483 (1955)... [Pg.617]

Although we have analysed the sedimentary structure for the subject acids and bases much more extensively than for other common subjects (salts, organic chemistry, electrochemistry) in the chemistry curriculum, a similar sedimentary structure can be found throughout the entire curriculum with different incoherent layers being even inconsistent in several cases. [Pg.107]

Subjects Number of subjects Salt intake (grams per head per day) ... [Pg.345]

The collector contains an electrically-heated rubidium salt used as the thermionic source. During the elution of a molecule of a nitrogen compound, the nitrogen is ionized and the collection of these ions produces the signal. The detector is very sensitive but Its efficiency is variable subject to the type of nitrogen molecule, making quantification somewhat delicate. [Pg.79]

Dislocation theory as a portion of the subject of solid-state physics is somewhat beyond the scope of this book, but it is desirable to examine the subject briefly in terms of its implications in surface chemistry. Perhaps the most elementary type of defect is that of an extra or interstitial atom—Frenkel defect [110]—or a missing atom or vacancy—Schottky defect [111]. Such point defects play an important role in the treatment of diffusion and electrical conductivities in solids and the solubility of a salt in the host lattice of another or different valence type [112]. Point defects have a thermodynamic basis for their existence in terms of the energy and entropy of their formation, the situation is similar to the formation of isolated holes and erratic atoms on a surface. Dislocations, on the other hand, may be viewed as an organized concentration of point defects they are lattice defects and play an important role in the mechanism of the plastic deformation of solids. Lattice defects or dislocations are not thermodynamic in the sense of the point defects their formation is intimately connected with the mechanism of nucleation and crystal growth (see Section IX-4), and they constitute an important source of surface imperfection. [Pg.275]

Addition of several organomercury compounds (methyl, aryl, and benzyl) to conjugated dienes in the presence of Pd(II) salts generates the ir-allylpalladium complex 422, which is subjected to further transformations. A secondary amine reacts to give the tertiary allylic amine 423 in a modest yield along with diene 424 and reduced product 425[382,383]. Even the unconjugated diene 426 is converted into the 7r-allyllic palladium complex 427 by the reaction of PhHgCI via the elimination and reverse readdition of H—Pd—Cl[383]. [Pg.82]

A special application of the Japp-Klingemann/Eischer sequence is in the preparation of tryptamines from piperidone-3-carboxylate salts, a method which was originally developed by Abramovitch and Shapiro[2]. When the piperidone is subjected to Japp-Klingemann coupling under mildly alkaline conditions decarboxylation occurs and a 3-hydrazonopiperidin-2-one is isolated. Fischer cyclization then gives 1-oxotetrahydro-p-carbolines which can be hydrolysed and decarboxylated to afford the desired tryptamine. [Pg.67]

In the first chapter, devoted to thiazole itself, specific emphasis has been given to the structure and mechanistic aspects of the reactivity of the molecule most of the theoretical methods and physical techniques available to date have been applied in the study of thiazole and its derivatives, and the results are discussed in detail The chapter devoted to methods of synthesis is especially detailed and traces the way for the preparation of any monocyclic thiazole derivative. Three chapters concern the non-tautomeric functional derivatives, and two are devoted to amino-, hydroxy- and mercaptothiazoles these chapters constitute the core of the book. All discussion of chemical properties is complemented by tables in which all the known derivatives are inventoried and characterized by their usual physical properties. This information should be of particular value to organic chemists in identifying natural or Synthetic thiazoles. Two brief chapters concern mesoionic thiazoles and selenazoles. Finally, an important chapter is devoted to cyanine dyes derived from thiazolium salts, completing some classical reviews on the subject and discussing recent developments in the studies of the reaction mechanisms involved in their synthesis. [Pg.599]

This volume is intended to present a comprehensive description of the chemistry of thiazole and its monocyclic derivatives, based on the chemical literature up to December, 1976. It is not concerned with polycyclic thiazoles, such as benzo- or naphthothiazole, nor with hydrogenated derivatives, such as thiazolines or thiazolidines later volumes in this series are devoted to these derivatives. The chemistry of thiamine has also been excluded from the present volume because of the enormous amount of literature corresponding to the subject and is developed in another volume. On the other hand, a discussion of selenazole and its monocyclic derivatives has been included, and particular emphasis has been given to the cyanine dyes derived from thiazolium salts. [Pg.1]

Starch is subject to fermentation by many microorganisms and, unless the mud is saturated with salt or the pH is >11.5, a preservative or biocide must be added if the mud is to be used for an extended period of time. The most common biocide until the mid-1980s was paraformaldehyde [9002-81-7]. This material has been largely replaced by isothia2olones (at 5—10 ppm cone) (74), carbamates, and glutaraldehyde [111-30-8]. Alternatively, the biocide may be incorporated during the processing of the starch and is present in the commercial product. [Pg.181]

Kinetics are slow and many hours are requited for a 95% conversion of the reactants. In the case of the subject compound, there is evidence that the reaction is autocatalytic but only when approximately 30% conversion to the product has occurred (19). Reaction kinetics are heavily dependent on the species of halogen ia the alkyl haHde and decrease ia the order I >Br >C1. Tetrabutylphosphonium chloride exhibits a high solubiHty ia a variety of solvents, for example, >80% ia water, >70% ia 2-propanol, and >50% ia toluene at 25°C. Its analogues show similar properties. One of the latest appHcations for this phosphonium salt is the manufacture of readily dyeable polyester yams (20,21). [Pg.319]

RM can be a traditional Grignard reagent or an organolithium, 2inc, aluminum, or mercury compound. The Grignard route is employed commercially for production of tertiary phosphines, even though these reactions are subject to side reactions. Yields are often low, eg, 40—50% for (C4H )2P prepared via a Grignard reaction (18). A phosphoms—carbon bond can form from the metathetical reaction of a phosphoms haUde and a pseudohaUde salt. [Pg.361]

Shipment Methods and Packaging. Pyridine (1) and pyridine compounds can be shipped in bulk containers such as tank cars, rail cars, and super-sacks, or in smaller containers like fiber or steel dmms. The appropriate U.S. Department of Transportation (DOT) requirements for labeling are given in Table 4. Certain temperature-sensitive pyridines, such as 2-vinylpyridine (23) and 4-vinylpyridine are shipped cold (<—10°C) to inhibit polymerisation. Piperidine (18) and certain piperidine salts are regulated within the United States by the Dmg Enforcement Agency (DEA) (77). Pyridines subject to facile oxidation, like those containing aldehyde and carbinol functionaUty, can be shipped under an inert atmosphere. [Pg.333]

Chemical Properties. Anhydrous sodium dithionite is combustible and can decompose exothermically if subjected to moisture. Sulfur dioxide is given off violentiy if the dry salt is heated above 190°C. At room temperature, in the absence of oxygen, alkaline (pH 9—12) aqueous solutions of dithionite decompose slowly over a matter of days. Increased temperature dramatically increases the decomposition rate. A representation of the decomposition chemistry is as follows ... [Pg.150]

Methods (25,26) to iacrease the ratio of the desired a-isomer (1) versus the unsweet -isomer [22839-61-8] (3) exist and are proprietary. The isomers can be separated by subjecting the solution of the final step to hydrochloric acid. The desired a-isomer hydrochloride salt crystallines out of the solution the P-isomer remains. There are many patented synthetic processes. The large-scale synthesis of aspartame has been discussed (27—47). [Pg.274]

The process by which porous sintered plaques are filled with active material is called impregnation. The plaques are submerged in an aqueous solution, which is sometimes a hot melt in a compound s own water of hydration, consisting of a suitable nickel or cadmium salt and subjected to a chemical, electrochemical, or thermal process to precipitate nickel hydroxide or cadmium hydroxide. The electrochemical (46) and general (47) methods of impregnating nickel plaques have been reviewed. [Pg.548]

In the presence of the chelating agent and the insoluble salt, MX, pM of the solution is subject to both the metal buffering and the solubiUty equiUbria. Equating the right-hand sides of the equations 26 and 29 and rearranging gives... [Pg.391]

Polyarylether Ketones. The aromatic polyether ketones are tme thermoplastics. Although several are commercially available, two resins in particular, poly ether ether ketone [31694-16-3] (PEEK) from ICI and poly ether ketone ketone (PEKK) from Du Pont, have received most of the attention. PEEK was first synthesized in 1981 (20) and has been well studied it is the subject of numerous papers because of its potential use in high performance aircraft. Tough, semicrystalline PEEK is prepared by the condensation of bis(4-fiuorophenyl) ketone with the potassium salt of bis(4-hydroxyphenyl) ketone in a diaryl sulfone solvent, such as diphenyl sulfone. The choice of solvent is critical other solvents, such as Hquid HE, promote the reaction but lead to premature low molecular-weight crystals, which do not exhibit sufficient toughness (21). [Pg.38]

Color Additives. The FDA has created a unique classification and strict limitations on color additives (see also CoLORANTS FOR FOOD, DRUGS, COSMETICS, AND MEDICAL DEVICES). Certified color additives are synthetic organic dyes that ate described in an approved color additive petition. Each manufactured lot of a certified dye must be analyzed and certified by the EDA prior to usage. Color lakes are pigments (qv) that consist of an insoluble metallic salt of a certified color additive deposited on an inert substrate. Lakes are subject to the color additive regulations of the EDA and must be certified by EDA prior to use. Noncertifted color additives requite an approved color additive petition, but individual batches need not be EDA certified prior to use. [Pg.286]


See other pages where SUBJECTS salt is mentioned: [Pg.47]    [Pg.47]    [Pg.35]    [Pg.2614]    [Pg.976]    [Pg.199]    [Pg.353]    [Pg.358]    [Pg.233]    [Pg.426]    [Pg.450]    [Pg.303]    [Pg.380]    [Pg.433]    [Pg.434]    [Pg.84]    [Pg.99]    [Pg.33]    [Pg.302]    [Pg.510]    [Pg.333]    [Pg.157]    [Pg.144]    [Pg.98]    [Pg.163]    [Pg.244]    [Pg.251]    [Pg.555]    [Pg.378]    [Pg.421]   
See also in sourсe #XX -- [ Pg.167 ]

See also in sourсe #XX -- [ Pg.775 ]

See also in sourсe #XX -- [ Pg.49 , Pg.50 , Pg.51 ]




SEARCH



Aryldiazonium salt 830 Subject

Bile salts Subject

Chromium salts Subject

Molten salts Subject

Oxadiazolium salts Subject

SILVER SALT Subject

SUBJECTS Epsom salt

Salt bridges Subject

Salt effects Subject

Subject amine salts

Subject ammonium salt

Subject cadmium salts

Subject group-IIB salts

Subject mercury salts

Subject pyridinium salts

Subject quaternary ammonium salts

Subject reaction with iminium salts

Subject rock salt

Subject zinc salts

© 2024 chempedia.info