Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Styrene solid

Polymer can be formed by reaction of crystalline monomer. This reaction is common in ethene or cyclic monomers and occurs in solid styrene. Solid phase polymerization is always associated with defects in the monomer crystals and appears to propagate fiom line defects (10). None of the materials covered in this text are made by solid state polymerization and the commercial application of this technique is rare. [Pg.813]

Fig. 9.52 Plot of In G against crystaUization temperature, Tc, for isotactic poly(styrene). Solid curve according to Eq. (9.209) with U = 1499, C = 39, experimental results from Miyamoto etal. (194). Fig. 9.52 Plot of In G against crystaUization temperature, Tc, for isotactic poly(styrene). Solid curve according to Eq. (9.209) with U = 1499, C = 39, experimental results from Miyamoto etal. (194).
Physical Properties. Styrene, CgH CH = CHj, is a pleasant smelling liquid, lighter than and insoluble in water, b.p. 146°. Stilbene, CjHjCH = CHCqHj, is a colourless solid, m.p. 125°, b.p. 306°, insoluble in water. [Pg.395]

Polymerisation. To 0 5 ml. of styrene add i drop of cone. HjSOj. Note the formation of a solid glassy mass of polystyrene. [Pg.395]

FIGURE 27 14 A section of polystyrene showing one of the benzene rings modified by chloromethylation Indi vidual polystyrene chains in the resin used in solid phase peptide synthesis are con nected to one another at various points (cross linked) by adding a small amount of p divinylbenzene to the styrene monomer The chloromethylation step is carried out under conditions such that only about 10% of the benzene rings bear —CH2CI groups... [Pg.1142]

C. Aguilar, P. BottuII and R. M. Marce, On-line and off-line solid-phase extraction with styrene-divinylbenzene-membrane extr action disks for determining pesticides in... [Pg.372]

A mixture containing 186 g (0.20 mol) of 2-aminopyridine, 0.55 g of lithium amide and 75 cc of anhydrous toluene was refluxed for 1.5 hours. Styrene oxide (12.0 g = 0.10 mol) was then added to the reaction mixture with stirring over a period of ten minutes. The reaction mixture was stirred and refluxed for an additional 3.5 hours. A crystalline precipitate was formed during the reaction which was removed by filtration, MP 170°C to 171°C, 1.5 g. The filtrate was concentrated to dryness and a dark residue remained which was crystallized from anhydrous ether yield 6.0 g. Upon recrystallization of the crude solid from 30 cc of isopropyl alcohol, 2.0 g of a light yellow solid was isolated MP 170°C to 171°C. [Pg.1224]

One of the first methods of polymerizing vinyl monomers was to expose the monomer to sunlight. In 1845, Blyth and Hoffman [7] obtained by this means a clear glassy polymeric product from styrene. Berthelot and Gaudechon [8] were the first to polymerize ethylene to a solid form and they used ultraviolet (UV) light for this purpose. The first demonstration of the chain reaction nature of photoinitiation of vinyl polymerization was done by Ostromislenski in 1912 [9]. He showed that the amount of poly(vinyl bromide) produced was considerably in excess of that produced for an ordinary chemical reaction. [Pg.244]

When the polymer was prepared by the suspension polymerization technique, the product was crosslinked beads of unusually uniform size (see Fig. 16 for SEM picture of the beads) with hydrophobic surface characteristics. This shows that cardanyl acrylate/methacry-late can be used as comonomers-cum-cross-linking agents in vinyl polymerizations. This further gives rise to more opportunities to prepare polymer supports for synthesis particularly for experiments in solid-state peptide synthesis. Polymer supports based on activated acrylates have recently been reported to be useful in supported organic reactions, metal ion separation, etc. [198,199]. Copolymers are expected to give better performance and, hence, coplymers of CA and CM A with methyl methacrylate (MMA), styrene (St), and acrylonitrile (AN) were prepared and characterized [196,197]. [Pg.431]

Styrene-butadiene rubber (SBR) is the most widely used synthetic rubber. It can be produced by the copolymerization of butadiene (= 75%) and styrene (=25%) using free radical initiators. A random copolymer is obtained. The micro structure of the polymer is 60-68% trans, 14-19% cis, and 17-21% 1,2-. Wet methods are normally used to characterize polybutadiene polymers and copolymers. Solid state NMR provides a more convenient way to determine the polymer micro structure. ... [Pg.353]

QCMB RAM SBR SEI SEM SERS SFL SHE SLI SNIFTIRS quartz crystal microbalance rechargeable alkaline manganese dioxide-zinc styrene-butadiene rubber solid electrolyte interphase scanning electron microscopy surface enhanced Raman spectroscopy sulfolane-based electrolyte standard hydrogen electrode starter-light-ignition subtractively normalized interfacial Fourier transform infrared... [Pg.604]

A short and efficient synthetic approach to hydroxy-substituted ( )-stil-benoids, as exemplified by the natural compound resveratrol (371b) via solid-phase CM, was reported by a Korean group (Scheme 71) [154]. When two different stilbenes were allowed to couple by catalyst C, all three kinds of possible stilbenes were obtained as an inseparable mixture. Anchoring 4-vinylphenol to Merrifield resin, followed by exposing the supported styrenyl ether 368 and diacetoxy styrene 369 (10 equiv) to the catalyst, inhibited self-metathesis of the supported substrate. Sequential separation of the homodimer formed from 369 by washing and subsequent cleavage of the resin 370 with acid provided (E)-stilbene 371a with complete stereocontrol in 61% yield. [Pg.340]

Another family of polyols is the filled polyols.llb There are several types, but die polymer polyols are die most common. These are standard polyether polyols in which have been polymerized styrene, acrylonitrile, or a copolymer thereof. The resultant colloidal dispersions of micrometer-size particles are phase stable and usually contain 20-50% solids by weight. The primary application for these polyols is in dexible foams where the polymer filler serves to increase foam hardness and load-bearing capacity. Other filled polyol types diat have been developed and used commercially (mainly to compete with die preeminent polymer polyols) include the polyurea-based PEID (polyhamstoff dispersion) polyols and the urethane-based PIPA (poly isocyanate polyaddition) polyols. [Pg.213]

A modified latex composition contains a phosphorus surface group. Such a latex is formed by emulsion polymerization of unsaturated synthetic monomers in the presence of a phosponate or a phosphate which is intimately bound to the surface of the latex. Thus, a modified latex containing 46% solids was prepared by emulsion polymerization of butadiene, styrene, acrylic acid-styrene seed latex, and a phosphonate comonomer in H20 in the presence of phosphated alkylphenol ethoxylate at 90°C. The modified latex is useful as a coating for substrates and as a binder in aqueous systems containing inorganic fillers employed in paper coatings, carpet backings, and wallboards [119]. [Pg.602]

Nickel and palladium react with a number of olefins other than ethylene, to afford a wide range of binary complexes. With styrene (11), Ni atoms react at 77 K to form tris(styrene)Ni(0), a red-brown solid that decomposes at -20 °C. The ability of nickel atoms to coordinate three olefins with a bulky phenyl substituent illustrates that the steric and electronic effects (54,141) responsible for the stability of a tris (planar) coordination are not sufficiently great to preclude formation of a tris complex rather than a bis (olefin) species as the highest-stoichiometry complex. In contrast to the nickel-atom reaction, chromium atoms react (11) with styrene, to form both polystyrene and an intractable material in which chromium is bonded to polystyrene. It would be interesting to ascertain whether such a polymeric material might have any catal3dic activity, in view of the current interest in polymer-sup-ported catalysts (51). [Pg.149]

The situation is confused, however, by the case of certain chemicals. Styrene, for example, was known from the mid-nineteenth century as a clear organic liquid of characteristic pungent odour. It was also known to convert itself under certain circumstances into a clear resinous solid that was almost odour-free, this resin then being called metastyrene. The formation of metastyrene from styrene was described as a polymerisation and metastyrene was held to be a polymer of styrene. However, these terms applied only in the sense that there was no change in empirical formula despite the very profound alteration in chemical and physical properties. There was no understanding of the cause of this change and certainly the chemists of the time had no idea of what had happened to the styrene that was remotely akin to the modem view of polymerisation. [Pg.2]

Industrial Engineering Chemistry Research 34, No.12, Dec.1995, p.4514-9 CHEMICAL RECYCLING OF WASTE PS INTO STYRENE OVER SOLID ACIDS AND BASES... [Pg.81]

The eatalytie degradation of waste PS into styrene was studied using solid aeids and bases as eatalysts. Degradation meehanisms are diseussed in terms of the depolymerisation reaetion. 19 refs. [Pg.81]

Neagu, C., Puskas, J.E., Singh, M.A., and Natansohn, A. Domain sizes and interface thickness determination for styrene-isobutylene block copolymer systems using solid-state NMR spectroscopy. Macromolecules, 33, 5976-5981, 2000. [Pg.216]

FIGURE 26.56 Log Abrasion loss by a blade (solid lines) and log cut growth rate (dashed hnes) of noncrystallizing rubber compounds as function of log frictional and log tearing energy, respectively isomerized natural rubber (NR), 2 styrene-butadiene rubber (SBR), and 3 acrylate-butadiene rubber (ABR). (From Champ, D.H., Southern, E., and Thomas, A.G., Advances in Polymer Friction and Wear, Lieng Huang Lee (ed.), Plenum, New York/London, 1974, p. 134.)... [Pg.731]

S. Bandyopadhyay, S.L. Agrawal, P. Sajith, N. Mandal, S. Dasgupta, R. Mukhopadhyay, A.S. Deuri, and S.C. Ameta, Research on the application of recycled waste RFL (Resorcinol-Formaldehyde-Latex) dip solid in Styrene Butadiene Rubber based compounds. Progress in Rubber, Plastics and Recycling Technology, 23(1), 21, 2007. [Pg.1041]


See other pages where Styrene solid is mentioned: [Pg.184]    [Pg.760]    [Pg.184]    [Pg.760]    [Pg.347]    [Pg.717]    [Pg.1141]    [Pg.254]    [Pg.696]    [Pg.585]    [Pg.586]    [Pg.586]    [Pg.587]    [Pg.718]    [Pg.1141]    [Pg.84]    [Pg.31]    [Pg.181]    [Pg.233]    [Pg.160]    [Pg.680]    [Pg.303]    [Pg.33]    [Pg.102]    [Pg.97]    [Pg.113]    [Pg.13]    [Pg.716]    [Pg.931]   
See also in sourсe #XX -- [ Pg.753 ]




SEARCH



Styrenes solid support

© 2024 chempedia.info