Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sterols acidic

More drastic oxidation of the ethylenic bonds of oleic, linoleic, and similar unsaturated fatty acids causes the action to go beyond the formation of oxygenated groups and to result in rupture of the bond as well as in oxidation. Such agents as the dichromates, permanganates, and nitric acid may be used to obtain the effect. Thus, oleic, dihydroxystearic, and sterolic acids yield azelaic and pelargonic acids, products that may be further oxidized if the reaction is forced. [Pg.504]

M. C. Carey, in Enterohepatic Circulation of Bile Acids and Sterol Metabolism, G. Paumgartner, ed., MTP Press, Lancaster, Boston, 1984. [Pg.158]

A.- ng deduction. This is an irreversible reaction which is a foremost determinant of the secretion rate of cortisol (double bonds and C-3 carbonyl). Catalyzed predominantiy by cortisone P-reductase and 3a-hydroxysteroid dehydrogenases, SP sterols result, although 5a sterols are more prevalent in the case of other glucocorticoids. Urocortisol and urocortisone result from the metabohsm of cortisol and cortisone, respectively. Compounds can be complexed to glucuronic acid at this point. [Pg.97]

Fats and oils are one of the oldest classes of chemical compounds used by humans. Animal fats were prized for edibiUty, candles, lamp oils, and conversion to soap. Fats and oils are composed primarily of triglycerides (1), esters of glycerol and fatty acids. However, some oils such as sperm whale (1), jojoba (2), and orange roughy (3) are largely composed of wax esters (2). Waxes (qv) are esters of fatty acids with long-chain aUphatic alcohols, sterols, tocopherols, or similar materials. [Pg.122]

Sterols. Sterols (4) are tetracycHc compounds derived biologically from terpenes. They are fat-soluble and therefore are found in small quantities in fats and oils. Cholesterol [57-88-5] (4a) is a common constituent in animal fats such as lard, tallow, and butterfat. The hydroxyl group can be free or esterified with a fatty acid. [Pg.123]

Deodorization can be carried out ki batch, continuous, or semicontkiuous systems. Figure 4 shows a typical design for a semicontkiuous deodorizer. The heated ok is passed through a series of trays under vacuum. Steam is passed through the ok through a steam sparge ki the bottom of the tray. Volatiles are carried through the headspace and condensed. In addition to fatty acids and compounds responsible for odor, some tocopherols and sterols are also distilled kito the condensate. The amount of tocopherols distilled depends on deodorization temperature and vacuum. [Pg.127]

Antioxidants (qv) have a positive effect on oils when present in the proper concentration. Sterols and tocopherols, which are natural antioxidants, may be analy2ed by gas-Hquid chromatography (glc), high performance Hquid chromatography (hplc), or thin-layer chromatography (tic). Synthetic antioxidants maybe added by processors to improve the performance or shelf life of products. These compounds include butylatedhydroxyanisole (BHA), butylated hydroxytoluene (BHT), / fZ-butyUiydroquinone (TBHQ), and propyl gallate. These materials may likewise be analy2ed by glc, hplc, or tic. Citric acid (qv), which functions as a metal chelator, may also be deterrnined by glc. [Pg.134]

Experimental procedures have been described in which the desired reactions have been carried out either by whole microbial cells or by enzymes (1—3). These involve carbohydrates (qv) (4,5) steroids (qv), sterols, and bile acids (6—11) nonsteroid cycHc compounds (12) ahcycHc and alkane hydroxylations (13—16) alkaloids (7,17,18) various pharmaceuticals (qv) (19—21), including antibiotics (19—24) and miscellaneous natural products (25—27). Reviews of the microbial oxidation of aUphatic and aromatic hydrocarbons (qv) (28), monoterpenes (29,30), pesticides (qv) (31,32), lignin (qv) (33,34), flavors and fragrances (35), and other organic molecules (8,12,36,37) have been pubflshed (see Enzyp applications, industrial Enzyt s in organic synthesis Elavors AND spices). [Pg.309]

The quaHty, ie, level of impurities, of the fats and oils used in the manufacture of soap is important in the production of commercial products. Fats and oils are isolated from various animal and vegetable sources and contain different intrinsic impurities. These impurities may include hydrolysis products of the triglyceride, eg, fatty acid and mono/diglycerides proteinaceous materials and particulate dirt, eg, bone meal and various vitamins, pigments, phosphatides, and sterols, ie, cholesterol and tocopherol as weU as less descript odor and color bodies. These impurities affect the physical properties such as odor and color of the fats and oils and can cause additional degradation of the fats and oils upon storage. For commercial soaps, it is desirable to keep these impurities at the absolute minimum for both storage stabiHty and finished product quaHty considerations. [Pg.150]

Initial steroid research involved isolation of sterols and bile acids from natural sources. DeFourcroy is generally credited with the discovery of cholesterol [57-88-5] (2) in 1789 (3). In 1848, choHc acid [81-25-4] (3) was isolated from the saponification of ox bile and its elementary composition deterrnined as... [Pg.413]

Although many sterols and bile acids were isolated in the nineteenth century, it was not until the twentieth century that the stmcture of the steroid nucleus was first elucidated (5). X-ray crystallographic data first suggested that the steroid nucleus was a thin, lath-shaped stmcture (6). This perhydro-l,2-cyclopentenophenanthrene ring system was eventually confirmed by the identification of the Diels hydrocarbon [549-88-2] (4) and by the total synthesis of equilenin [517-09-9] (5) (7). [Pg.413]

The first step in CTO distillation is depitching. A relatively small distillation column is used as a pitch stripper. The vapor from the pitch stripper is fed directiy into the rosin column, where rosin and fatty acids are separated. Rosin is taken from the bottoms of the column and fatty acids as a sidestream near the top. Palmitic acid and light neutrals are removed in the rosin column as heads. The operation is designed to minimize holdup and product decomposition. Care is taken to prevent carryover of some of the heavier neutrals, such as the sterols, from the depitcher to the rosin column (24). [Pg.305]

TorteUi-JaffH reaction acetic acid + 2 wt% Br2 in CHCl green sterols with ditertiary double bonds vitamin D and compounds that give similar bonds upon isomerization or... [Pg.133]

The major components of candelilla wax are hydrocarbons, esters of long-chain alcohols and acids, long-chain alcohols, sterols, and neutral resins, and long-chain acids. Typically, candelilla wax has a melting point of 70°C, a penetration of 3 drum at 25°C, an acid number of 14, and a saponification number of 55. Principal markets for candelilla include cosmetics, foods, and pharmaceuticals. The FDA affirmed Candelilla as GRAS for certain food apphcations in 21 CFR 184.1976. [Pg.315]

It is important to note that diet is a complex mixture that contain compounds with varying activity. Chemical stimulators of colon cancer growth include bile acids, 1,2-diglycerides and prostaglandins which stem from consumption of fat. In contrast, fruits and vegetables contain substances such as carotenoids, flavonoids and fibre, which may inhibit cancer cell growth, and the risk of colon cancer appears to be mirrored by the ratio of plant sterols to cholesterol in the... [Pg.126]

Cholestanone has been prepared by the oxidation of dihydro-eholesterol with chromic anhydride in acetic acid solution.1 The yield is sometimes diminished as a result of the partial acetylation of the sterol. [Pg.44]

Rhodamine 6G long-chain hydrocarbons [169] squalene, a-amyrin [170] methyl esters of fatty acids [171] glycerides [91] sterols [172, 173] isoprenoids, quinones [HI] lipoproteins [174] glycosphingolipids [175] phenolic lipids [176] phosphonolipids [177] increasing the sensitivity after exposure to iodine vapor [178,179]... [Pg.44]

Sterols, Fatty Acids, Triglycerides, Hydrocarbons 5] Method... [Pg.214]

Note Silica gel, kieselguhr and polyamide layers can be used as stationary phases. Not all acids are stained on RP layers. Amino layers yield a pale blue background. The detection limits are in the pg range for carboxylic acids [1], thioglycolic and dithioglycolic acids [2] and for antithyroid pharmaceuticals [4] they are about 5 ng per chromatogram zone for sterols and steryl esters [6]. [Pg.249]

Colour Reactions. Rochelmeyer (1939) has provided a list of colour reactions given by solasodine and solasodiene (solanosodine), with reagents usually applied to the sterols, and Briggs et al. have found that when concentrated sulphuric acid (1 mil) is carefully added to a solution of solasonine or solasodine in hot alcohol (1 mil) a characteristic, intense, greenish-yellow fluorescence is produced, a reaction which is not given by solanine or solanidine. They have also found that intense colours are formed when solasonine or solasodine is mixed with resorcinol, or one of a variety of aldehydes, and boiled with concentrated hydrochloric acid. Colours are also produced with this test by cholesterol, digitonin, jacobine carbazole, pyrrole, or nicotine, the most intense colours being formed with p-hydroxybenzaldehyde or anisaldehyde. [Pg.668]


See other pages where Sterols acidic is mentioned: [Pg.319]    [Pg.1641]    [Pg.1640]    [Pg.65]    [Pg.319]    [Pg.1641]    [Pg.1640]    [Pg.65]    [Pg.96]    [Pg.173]    [Pg.240]    [Pg.372]    [Pg.372]    [Pg.144]    [Pg.98]    [Pg.99]    [Pg.360]    [Pg.132]    [Pg.108]    [Pg.47]    [Pg.97]    [Pg.202]    [Pg.413]    [Pg.415]    [Pg.427]    [Pg.304]    [Pg.127]    [Pg.133]    [Pg.147]    [Pg.343]    [Pg.387]    [Pg.438]    [Pg.58]    [Pg.195]   
See also in sourсe #XX -- [ Pg.50 ]




SEARCH



Fatty acid esterified sterols in canola oil

Sterol regulatory element-binding proteins fatty acid regulator

© 2024 chempedia.info