Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stack removal from

The oxidant preheater, positioned in the convective section and designed to preheat the oxygen-enriched air for the MHD combustor to 922 K, is located after the finishing superheat and reheat sections. Seed is removed from the stack gas by electrostatic precipitation before the gas is emitted to the atmosphere. The recovered seed is recycled by use of the formate process. Alkali carbonates ate separated from potassium sulfate before conversion of potassium sulfate to potassium formate. Sodium carbonate and potassium carbonate are further separated to avoid buildup of sodium in the system by recycling of seed. The slag and fly-ash removed from the HRSR system is assumed to contain 15—17% of potassium as K2O, dissolved in ash and not recoverable. [Pg.425]

The soft-mud process is used to make handmade btick. Mote water is added to the clay to make a thinner paste, typicaHy about 20 to 30% by weight of water. The resulting slurry is packed into molds that have a sand or water coating on them that acts as a release agent. The wet brick shapes ate removed from the molds when they have set up enough to handle and ate then stacked for drying and burning. [Pg.324]

Cement plants in the United States are now carehiUy monitored for compliance with Environmental Protection Agency (EPA) standards for emissions of particulates, SO, NO, and hydrocarbons. AH plants incorporate particulate collection devices such as baghouses and electrostatic precipitators (see Air POLLUTION CONTROL methods). The particulates removed from stack emissions are called cement kiln dust (CKD). It has been shown that CKD is characterized by low concentrations of metals which leach from the CKD at levels far below regulatory limits (63,64). Environmental issues continue to be of concern as the use of waste fuel in cement kilns becomes more widespread. [Pg.295]

Personnel are protected in working with tritium primarily by containment of all active material. Containment devices such as process lines and storage media are normally placed in well-ventilated secondary enclosures (hoods or process rooms). The ventilating air is monitored and released through tall stacks environmental tritium is limited to safe levels by atmospheric dilution of the stack effluent. Tritium can be efficiently removed from air streams by catalytic oxidation followed by water adsorption on a microporous soHd absorbent (80) (see Absorption). [Pg.16]

Alternatively, reactant and product gases can be distributed to and removed from individual cells through internal pipes in a design analogous to that of filter presses, (iare must be exercised to assure an even flow distribution between the entiv and exit cells. The seals in internally manifolded stacks are generally not subject to electrical, thermal, and mechanical stresses, but are more numerous than in externally manifolded stacks. [Pg.2411]

For new rotors, where the elements have not yet been put on the rotor, other techniques can be used. First, the components can be individually balanced on a precision mandrel. Precision means that the runout is a few tenths of a mil (.001 inch). The runout high spot should be scribed on the mandrel. The new component now can be reasonably well-balanced. As the component is removed from the mandrel, the mandrel mark should be transferred to the component. When all the components are completed, the shaft is checked for runout. The high spot should be marked. As the components are stacked onto the shaft, the marks on the shaft are aligned with those transferred to the component. This works well with keyless rotors (no key between shaft and component). Experience has shown ihat in most cases with keyless rotors when the stacked rotor is put in the balance machine and checked, the residual unbalance is within the acceptable tolerance. If not, the rotor must be unstacked and the problem located. It must be remembered, however, if the components were properly balanced and the rotor comes out with unbalance, there must be a proh-... [Pg.375]

Baghouses are preferred over venturi scrubbers for controlling particulate matter emissions from loading and pushing operations because of the higher removal efficiencies. ESPs are effective for final tar removal from coke oven gas. Stack air emissions should be monitored continuously for particulate matter. Alternatively, opacity measurements of stack gases can suffice. Fugitive emissions should be monitored annually for VOCs. [Pg.74]

A patented Dow-designed specimen bar magazine with a capacity of 125 bars makes the specimens available to the robotic arm. Specimens are stacked vertically, with their end tabs constrained by two channels so that only vertical motion is possible. A slot in the base of each channel allows the robot to pull specimens, one at a time, from the bottom of the stack. Once removed from the channels, the bars are dropped down a pair of circular slides which... [Pg.46]

Assuming plug flow of both phases in the trickle bed, a volumetric mass transfer coefficient, kL a, was calculated from the measurements. The same plug flow model was then used to estimate bed depth necessary for 95% S02 removal from the simulated stack gas. Conversion to sulfuric acid was handled in the same way, by calculating an apparent first-order rate constant and then estimating conversion to acid at the bed depth needed for 95% S02 removal. Pressure drop was predicted for this bed depth by multiplying... [Pg.266]

Several uncertainties in this periodic process have not been resolved. Pressure drop is too high at SV = 10,000 h 1 when packed beds of carbon are used. Study of carbon-coated structured packing or of monoliths with activated carbon washcoats is needed to see if lower pressure drops at 95% SO2 removal can be achieved. Stack gas from coal or heavy oil combustion contains parts-per-million or -per-billion quantities of toxic elements and compounds. Their removal in the periodically operated trickle bed must be examined, as well as the effect of these elements on acid quality. So far, laboratory experiments have been done to just 80°C use of acid for flushing the carbon bed should permit operation at temperatures up to 150°C. Performance of periodic flow interruption at such temperatures needs to be determined. The heat exchange requirements for the RTI-Waterloo process shown in Fig. 26 depend on the temperature of S02 scrubbing. If operation at 150°C is possible, gas leaving the trickle bed can be passed directly to the deNO, step without reheating. [Pg.273]

Metzinger, J., Hudgins, R. R., Silveston, P. L., Gangwal, S. K., Application of a periodically operated trickle bed to sulfur removal from stack gas. Chem. Eng. Sci. 47, 3723-3727... [Pg.280]

The management or disposal of metals and ash, other by-products of the combustion process, also causes concern. Ash is an inert solid material composed primarily of carbon, salts, and metals. During combustion, most ash collects at the bottom of the combustion chamber (bottom ash). When this ash is removed from the combustion chamber, it may be considered hazardous waste via the derived-from rule or because it exhibits a characteristic. Small particles of ash (particulate matter that may also have metals attached), however, may be carried up the stack with the gases (fly ash). These particles and associated metals are also regulated by the combustion regulations, as they may carry hazardous constituents out of the unit and into the atmosphere. Since combustion will not destroy inorganic compounds present in hazardous waste, such as metals, it is possible that such... [Pg.457]

This operation is also performed using machines. The cured plates are fed into the parting machine by mechanical means. The plates are parted in the machine and then collected when the operation is completed manually. The parted plates are thereafter stacked for use in battery assembly. More rejects are also generated in this section as well as some lead dust. The ventilation system in this area ensures that the lead dust generated is removed from the work area and discharged into the atmosphere through a baghouse filter. [Pg.1308]

While the use of low-sulfur fuels is one mechanism to reduce sulfur dioxide emission, alternatively most approaches focus on scrubbing or ridding the emissions in smoke stacks of sulfur dioxide gas. A number of different types of scrubbers, i.e., sulfur dioxide removal systems, are available for industry. One system sprays the flue gas into a liquid solution of sodium hydroxide. The hydroxide combines with SO2 and O2 to form the corresponding sulfate which can be removed from the aqueous solution ... [Pg.47]


See other pages where Stack removal from is mentioned: [Pg.403]    [Pg.310]    [Pg.317]    [Pg.9]    [Pg.77]    [Pg.78]    [Pg.526]    [Pg.409]    [Pg.430]    [Pg.2411]    [Pg.76]    [Pg.425]    [Pg.479]    [Pg.359]    [Pg.197]    [Pg.144]    [Pg.741]    [Pg.1176]    [Pg.631]    [Pg.768]    [Pg.52]    [Pg.396]    [Pg.262]    [Pg.266]    [Pg.269]    [Pg.270]    [Pg.649]    [Pg.1261]    [Pg.355]    [Pg.324]    [Pg.256]    [Pg.57]    [Pg.101]    [Pg.160]    [Pg.89]    [Pg.258]   
See also in sourсe #XX -- [ Pg.174 ]




SEARCH



Gases removal from stack

© 2024 chempedia.info