Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stable colloids

In preparing the membrane, a clear sol was obtained by the addition of acid into the aluminum sec-butoxide sol to peptise the sol and obtain a stable colloid solution. Aluminum monohydroxides formed by the hydrolysis of aluminum alkoxides, which are peptisable to a clear sol. Peptisation was performed by the addition of acid and heat treatment for a sufficient time. It was found that stable sols cannot be obtained when the concentration of the peptisation acid is too low. The critical range for inorganic acids such as nitric, hydrochloric and perchloric acids is 0.03-0.1 mole/mole of hydroxide. In this study, nitric acid was used as the peptising agent. The resulting sols are poured into Petri dishes and dried in an oven at a controlled drying rate to obtain a gel layer. The molar ratio of zirconia salt... [Pg.383]

Almost all urethane materials are synthesized without the use of solvents or water as diluents or earners and are referred to as being 100% solids. This is true of all foams and elastomers. There are many products, however, which do utilize solvents or water, and these are known as solvent-borne and waterborne systems, respectively. In the past, many coatings, adhesives, and binders were formulated using a solvent to reduce viscosity and/or ease application. However, the use of volatile solvents has been dramatically curtailed in favor of more environmentally friendly water (see Section 4.1.3), and now there are many aqueous coatings, adhesives, and associated raw materials. Hydrophilic raw materials capable of being dispersed in water are called water reducible (or water dispersible), meaning they are sufficiently hydrophilic so as to be readily emulsified in water to form stable colloidal dispersions. [Pg.237]

In an attempt to create particles with different sizes and properties, ligands other than dodecanethiol were used to create polydispersed colloids from the SMAD method. Thus, dodecylamine, trioctyl phosphine, and dodecyl alcohol were used in addition to dodecanethiol. The results of these studies led to nearly monodispersed stable colloids for the phosphine protected particles at 6.3 nm in diameter (Figure 13). [Pg.240]

The experimental apparatus used consisted of a stationary metal atom-vapor reactor which has been detailed in the literature earlier. (39) Metal was evaporated (-0.1 to 0.5 g) and codeposited at -196°C with excess organic solvent vapor (- MO-150 mL). The frozen matrix was allowed to warm under controlled conditions, and upon melting stirring was commenced. After warming to room temperature stable colloidal solutions were obtained and syphoned out under N. ... [Pg.252]

It turns out that in solutions of c < 0.1 gL 1 thermosensitive homopolymers, such as PNIPAM, PVCL, and PVME, themselves, form stable colloids in water at elevated temperature in the absence of additives or chemical modification [141-147]. The colloids remain stable upon prolonged heat treatment, without detectable aggregation or precipitation. Also, core-shell particles consisting of PNIPAM and a hydrophobic block are stable not only below but also above the LCST up to 50 °C, when the PNIPAM block is expected to be insoluble [185]. Factors that determine the colloidal stability as defined in Sect. 1.1 do not explain, it seems, their stability. In this review we have compiled a fist of all the reported instances where the formation of stable particles was detected in aqueous solutions of neutral thermosensitive neutral polymers at elevated temperature. We present studies of homopolymers, as well as their copolymers consisting of thermosensitive fragments and ei-... [Pg.28]

Microemulsions are a convenient medium for preparing microgels in high yields and rather uniform size distribution. The name for these special emulsions was introduced by Schulman et al. [48] for transparent systems containing oil, water and surfactants, although no precise and commonly accepted definitions exist. In general a microemulsion may be considered as a thermodynamically stable colloidal solution in which the disperse phase has diameters between about 5 to lOOnm. [Pg.143]

Many people love cool autumn mornings, with the scent of the cool air and a rich dew underfoot on the grass and paths. The dew forms when molecules of water from the air coalesce, because of the cool temperature, to form minute aggregates that subsequently nucleate to form visible drops of water. These water drops form a stable colloid (see Chapter 10). [Pg.42]

Milk is an unusual colloid in comprising oil particles suspended in water. Adding, say, olive or sunflower oil to water will not produce a stable colloid. Two layers will re-form rapidly even after vigorous shaking, with the oil floating above the water. Milk is stable because it contains an emulsifier, i.e. a compound to promote the formation of a colloidal emulsion. [Pg.512]

With these results in hand, we have next introduced new types of Lewis acids, e.g scandium tris(-dodecyl sulfate) (4a) and scandium trisdodecanesul-fonate (5a) (Chart 1).[1S1 These Lewis acid-surfactant-combined catalysts (LASCs) were found to form stable colloidal dispersions with organic substrates in water and to catalyze efficiently aldol reactions of aldehydes with very water-labile silyl enol ethers. [Pg.7]

In summary, the examples given above demonstrate that immobilization of metal salts in a block copolymer micellar system followed by a reduction step is a suitable method to synthesize stable colloids with small particle sizes and narrow size distributions. Moreover, such systems are very interesting for catalytic applications because they offer the possibility of designing tailored catalysts for special demands and can be easily tuned by the choice and combination of different polymer block types and lengths, different types of the metal precursor and of the reduction method used. Additional introduction of further functionalities such as charges or chiral groups could make these catalyst systems even more versatile and effective. [Pg.286]

Biodegradable polyester-based nanoparticles have also been studied, especially in the biomedical domain. Like microelectronics, biomedical research follows the rule smaller is better . A typical example of nanoparticles based on the aliphatic polyester engineering by living ROP is provided by the poly(CL-h-GA) copolymers which form stable colloidal dispersions in organic solvents such as toluene and THF without the need of any additional surfactant [27]. The poly(CL-h-GA) particles form a new class of stable non-aqueous dispersions in... [Pg.54]

It is operationally difficult to distinguish between dissolved and colloidally dispersed substances. For example, colloidal metal-ion precipitates occasionally have particle sizes smaller than 100 A, sufficiently small to pass through a membrane filter, and organic substances can exist as a stable colloidal suspension. Information on the types of species encountered under different chemical conditions (type of complexes, their stabilities, rate of formation) is a prerequisite to better understanding of the transformation in properties of toxic chemicals in a water body. [Pg.284]

In real systems, both stable colloidal systems (as in paints, creams) and unstable systems (as in wastewater treatment) are of interest. It is thus seen that, from DLVO considerations, the degree of colloidal stability will be dependent on the following factors 1 2 3 4 5... [Pg.153]

The total concentration of complex formed during the complexation is proportional to X. During template polymerization of acrylic acid, a stable colloidal precipitate resulted in the systems under investigation, and turbidity measurements could be used, assuming that direct reading from the turbidimeter (in logarithmic scale) is proportional to the amount of polymeric product. The assumption was checked by calibration procedure. The light absorption (%) is proportional to the concentration of poly(acrylic acid)-poly(vinyl pyrrolidone) mixture.100% conversion was assumed when no increase in turbidity was detected by the recorder. In the case when copolymers were used as templates, the apparatus was calibrated for each copolymers separately. [Pg.138]

Mechanisms that may lead to the quasi irreversible binding of radionuclides to colloids belong to the key uncertainties of the assessment of the colloid problem. The kinetics of the dissociation of colloid-bound radionuclides are not yet understood. Radionuclide incorporation into stable colloids may enhance the colloid-mediated radionuclide release considerably. It is clear that only the investigation of the interaction mechanisms by spectroscopic methods is able to unravel the relevance of such processes. In order to allow the description of colloid-facilitated radionuclide migration, it is furthermore required to improve our understanding of the colloid interaction... [Pg.540]


See other pages where Stable colloids is mentioned: [Pg.396]    [Pg.178]    [Pg.84]    [Pg.767]    [Pg.293]    [Pg.297]    [Pg.444]    [Pg.210]    [Pg.253]    [Pg.327]    [Pg.356]    [Pg.423]    [Pg.91]    [Pg.348]    [Pg.154]    [Pg.205]    [Pg.62]    [Pg.29]    [Pg.240]    [Pg.69]    [Pg.509]    [Pg.375]    [Pg.131]    [Pg.9]    [Pg.517]    [Pg.266]    [Pg.204]    [Pg.21]    [Pg.36]    [Pg.285]    [Pg.276]    [Pg.159]    [Pg.199]    [Pg.84]    [Pg.126]    [Pg.201]   
See also in sourсe #XX -- [ Pg.199 ]




SEARCH



Characterization colloidally stable

Colloidal stable

Colloidal stable

Colloidal systems stable

Colloidally stable suspension

Colloidally stable, definition

Conditions for the Existence of a Stable Colloidal Liquid

Particle colloidally stable

Rheology colloidally stable concentrated suspensions

Stable Colloidal Suspensions

Stable Colloids in the Absence of Organics

Thermodynamically stable colloidal system

Thermodynamically stable colloidal system characteristics

Thermodynamically stable colloidal system interfacial energy

Thermodynamically stable colloidal system interfacial tension

Thermodynamically stable colloidal system temperature

© 2024 chempedia.info