Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stabilised analysis

Table 5.14 NMR nuclei in stabiliser analysis of vinyl polymers... Table 5.14 NMR nuclei in stabiliser analysis of vinyl polymers...
Applications Quantitative dry ashing (typically at 800 °C to 1200°C for at least 8h), followed by acid dissolution and subsequent measurement of metals in an aqueous solution, is often a difficult task, as such treatment frequently results in loss of analyte (e.g. in the cases of Cd, Zn and P because of their volatility). Nagourney and Madan [20] have compared the ashing/acid dissolution and direct organic solubilisation procedures for stabiliser analysis for the determination of phosphorous in tri-(2,4-di-t-butylphenyl)phosphite. Dry ashing is of limited value for polymer analysis. Crompton [21] has reported the analysis of Li, Na, V and Cu in polyolefins. Similarly, for the determination of A1 and V catalyst residues in polyalkenes and polyalkene copolymers, the sample was ignited and the ash dissolved in acids V5+ was determined photo-absorptiometrically and Al3+ by complexometric titration [22]. [Pg.594]

U.S. EPA, Silicate Technology Corporation s Solidification Stabilisation Technology for Organic and Inorganic Contaminants in S oils Applications Analysis Report, EPA/540/AR-92/010, Washington, D.C., 1992. [Pg.174]

Electrochemistry plays an important role in the large domain of. sensors, especially for gas analysis, that turn the chemical concentration of a gas component into an electrical signal. The longest-established sensors of this kind depend on superionic conductors, notably stabilised zirconia. The most important is probably the oxygen sensor used for analysing automobile exhaust gases (Figure 11.10). The space on one side of a solid-oxide electrolyte is filled with the gas to be analysed, the other side... [Pg.454]

Apart from routine quality control actions, additive analysis is often called upon in relation to testing additive effectiveness as well as in connection with food packaging and medical plastics, where the identities and levels of potentially toxic substances must be accurately known and controlled. Food contact plastics are regulated by maximum concentrations allowable in the plastic, which applies to residual monomers and processing aids as well as additives [64-66]. Analytical measurements provide not only a method of quality control but also a means of establishing the loss of stabilisers as a function of material processing and product ageing. [Pg.14]

More recently, the same author [41] has described polymer analysis (polymer microstructure, copolymer composition, molecular weight distribution, functional groups, fractionation) together with polymer/additive analysis (separation of polymer and additives, identification of additives, volatiles and catalyst residues) the monograph provides a single source of information on polymer/additive analysis techniques up to 1980. Crompton described practical analytical methods for the determination of classes of additives (by functionality antioxidants, stabilisers, antiozonants, plasticisers, pigments, flame retardants, accelerators, etc.). Mitchell... [Pg.18]

Progress in the field of polymer/additive analysis in the last three decades can best be illustrated by an old recipe for the direct determination of organotin stabilisers in PVC [142] ... [Pg.20]

Obviously, use of such databases often fails in case of interaction between additives. As an example we mention additive/antistat interaction in PP, as observed by Dieckmann et al. [166], In this case analysis and performance data demonstrate chemical interaction between glycerol esters and acid neutralisers. This phenomenon is pronounced when the additive is a strong base, like synthetic hydrotalcite, or a metal carboxylate. Similar problems may arise after ageing of a polymer. A common request in a technical support analytical laboratory is to analyse the additives in a sample that has prematurely failed in an exposure test, when at best an unexposed control sample is available. Under some circumstances, heat or light exposure may have transformed the additive into other products. Reaction product identification then usually requires a general library of their spectroscopic or mass spectrometric profiles. For example, Bell et al. [167] have focused attention on the degradation of light stabilisers and antioxidants... [Pg.21]

Conventional rubber compound analysis requires several instrumental techniques, in addition to considerable pretreatment of the sample to isolate classes of components, before these selected tests can be definitive. Table 2.5 lists some general analytical tools. Spectroscopic methods such as FTIR and NMR often encounter difficulties in the analysis of vulcanised rubbers since they are insoluble and usually contain many kinds of additives such as a curing agent, plasticisers, stabilisers and fillers. Pyrolysis is advantageous for the practical analysis of insoluble polymeric materials. [Pg.33]

It is of interest to examine the development of the analytical toolbox for rubber deformulation over the last two decades and the role of emerging technologies (Table 2.9). Bayer technology (1981) for the qualitative and quantitative analysis of rubbers and elastomers consisted of a multitechnique approach comprising extraction (Soxhlet, DIN 53 553), wet chemistry (colour reactions, photometry), electrochemistry (polarography, conductometry), various forms of chromatography (PC, GC, off-line PyGC, TLC), spectroscopy (UV, IR, off-line PylR), and microscopy (OM, SEM, TEM, fluorescence) [10]. Reported applications concerned the identification of plasticisers, fatty acids, stabilisers, antioxidants, vulcanisation accelerators, free/total/bound sulfur, minerals and CB. Monsanto (1983) used direct-probe MS for in situ quantitative analysis of additives and rubber and made use of 31P NMR [69]. [Pg.36]

Brack [81] has illustrated the analysis of antioxidants in a CB-free vulcanisate of unknown composition according to Scheme 2.7. Some components detected by off-line TD-GC-MS (cyclohexylamine, aniline and benzothiazole) were clearly indicative of the CBS accelerator other TD components were identified as the antioxidants BHT, 6PPD, Vulcanox BKF and the antiozonant Vulkazon AFS. In the methanol extract also the stabiliser ODPA was identified. The presence of an aromatic oil was clearly derived from the GC-MS spectra of the thermal and methanol extracts. The procedure is very similar to that of Scheme 2.3. [Pg.41]

Wieboldt et al. [560] have described SFE-SFC-FTIR analysis of hindered phenol primary antioxidants and phosphite secondary antioxidants in PE. SFE is more selective for the lower-range low-MW polymer than Soxhlet-type extraction. This yields a chromatogram with less interference from low-MW polymer peaks in the region where the additive components elute. As a result, SFE appears to be a better choice than Soxhlet-type extraction for the selective removal of additives from flaked polymer. SFE and dissolution/precipitation methods were compared for a PVC/stabiliser system [366]. [Pg.137]

Freitag and John [96] studied rapid separation of stabilisers from plastics. Fairly quantitative extraction (>90% of the expected content) of stabilisers from a powdered polymer was achieved by MAE within 3 to 6 min, as compared to 16 h of Soxhlet extraction for the same recovery. MAE and Soxhlet extraction have also been compared in the analysis of cyclic trimer in PET [113]. On the other hand, Ganzler et al. [128] compared the extraction yields for various types of compounds from nonpolymeric matrices for microwave irradiation with those obtained by the traditional Soxhlet or shake-flask extraction methods. Microwave extraction was more effective than the conventional methods, in particular in the case of polar compounds. As expected, the efficiency of the former is high especially when the extraction solvents contain water. With the high dipole moment of water, microwave heating is more... [Pg.138]

While additive analysis of polyamides is usually carried out by dissolution in HFIP and hydrolysis in 6N HC1, polyphthalamides (PPAs) are quite insoluble in many solvents and very resistant to hydrolysis. The highly thermally stable PPAs can be adequately hydrolysed by means of high pressure microwave acid digestion (at 140-180 °C) in 10 mL Teflon vessels. This procedure allows simultaneous analysis of polymer composition and additives [643]. Also the polymer, oligomer and additive composition of polycarbonates can be examined after hydrolysis. However, it is necessary to optimise the reaction conditions in order to avoid degradation of bisphenol A. In the procedures for the analysis of dialkyltin stabilisers in PVC, described by Udris [644], in some instances the methods can be put on a quantitative basis, e.g. the GC determination of alcohols produced by hydrolysis of ester groups. [Pg.154]

Oligomeric hindered amine light stabilisers, such as Tinuvin 622 and Chimassorb 944, resist satisfactory analysis by conventional HPLC and have required direct UV spectroscopic analysis of a polyolefin extract [596], PyGC of an extract [618,648], or SEC of an extract [649]. Freitag et al. [616] determined Tinuvin 622 in LDPE, HDPE and PP by saponification of the polymer dissolution in hot toluene via addition of an... [Pg.155]

GC is extensively used to determine phenolic and amine antioxidants, UV light absorbers, stabilisers and organic peroxide residues, in particular in polyolefins, polystyrene and rubbers (cf. Table 61 of Crompton [158]). Ostromow [159] has described the quantitative determination of stabilisers and AOs in acetone or methanol extracts of rubbers and elastomers by means of GC. The method is restricted to analytes which volatilise between 160 °C and 300 °C without decomposition. A selection of 47 reports on GC analysis of AOs in elastomers (period 1959-1982) has been published... [Pg.197]

David et al. [184] have shown that cool on-column injection and the use of deactivated thermally stable columns in CGC-FID and CGC-F1D-MS for quantitative determination of additives (antistatics, antifogging agents, UV and light stabilisers, antioxidants, etc.) in mixtures prevents thermal degradation of high-MW compounds. Perkins et al. [101] have reported development of an analysis method for 100 ppm polymer additives in a 500 p,L SEC fraction in DCM by means of at-column GC (total elution time 27 min repeatability 3-7 %). Requirements for the method were (i) on-line (ii) use of whole fraction (LVI) and (iii) determination of high-MW compounds (1200 Da) at low concentrations. Difficult matrix introduction (DMI) and selective extraction can be used for GC analysis of silicone oil contamination in paints and other complex analytical problems. [Pg.198]


See other pages where Stabilised analysis is mentioned: [Pg.194]    [Pg.228]    [Pg.194]    [Pg.228]    [Pg.143]    [Pg.164]    [Pg.390]    [Pg.397]    [Pg.130]    [Pg.279]    [Pg.4]    [Pg.9]    [Pg.15]    [Pg.18]    [Pg.19]    [Pg.19]    [Pg.20]    [Pg.35]    [Pg.42]    [Pg.44]    [Pg.47]    [Pg.48]    [Pg.54]    [Pg.65]    [Pg.70]    [Pg.97]    [Pg.110]    [Pg.146]    [Pg.150]    [Pg.195]    [Pg.197]   
See also in sourсe #XX -- [ Pg.457 ]




SEARCH



HALS stabilisers, analysis

Light stabilisers, analysis

Stabilisation Stabilise

Stabilisation Stabilised

Stabilisation Stabiliser

Stabilisation stabilisates

Stabilise

Stabilisers

Stabilisers analysis

Stabilisers analysis

Thermal stabilisers, analysis

© 2024 chempedia.info