Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solvent table

The zeroth-order rates of nitration depend on a process, the heterolysis of nitric acid, which, whatever its details, must generate ions from neutral molecules. Such a process will be accelerated by an increase in the polarity of the medium such as would be produced by an increase in the concentration of nitric acid. In the case of nitration in carbon tetrachloride, where the concentration of nitric acid used was very much smaller than in the other solvents (table 3.1), the zeroth-order rate of nitration depended on the concentrationof nitric acid approximately to the fifth power. It is argued therefore that five molecules of nitric acid are associated with a pre-equilibrium step or are present in the transition state. Since nitric acid is evidently not much associated in carbon tetrachloride a scheme for nitronium ion formation might be as follows ... [Pg.38]

Olah and his co-workers compared the behaviour of nitronium salts in competitive nitrations with the behaviour of other nitrating systems. The results are given in table 4.1, columns (a)-(j), and also in table 4.2. The results obtained from competitive nitrations using solutions of nitric acid in organic solvents (table 4.1, columns (6)-(e)) are in line with those obtained by earlier workers. The evidence that in nitromethane,... [Pg.68]

Table 7.9 Electronic Absorption Bands for Representative Chromophores Table 7.10 Ultraviolet Cutoffs of Spectrograde Solvents Table 7.11 Absorption Wavelength of Dienes Table 7.12 Absorption Wavelength of Enones and Dienones Table 7.13 Solvent Correction for Ultraviolet-Visible Spectroscopy Table 7.14 Primary Bands of Substituted Benzene and Heteroaromatics Table 7.15 Wavelength Calculation of the Principal Band of Substituted Benzene Derivatives... Table 7.9 Electronic Absorption Bands for Representative Chromophores Table 7.10 Ultraviolet Cutoffs of Spectrograde Solvents Table 7.11 Absorption Wavelength of Dienes Table 7.12 Absorption Wavelength of Enones and Dienones Table 7.13 Solvent Correction for Ultraviolet-Visible Spectroscopy Table 7.14 Primary Bands of Substituted Benzene and Heteroaromatics Table 7.15 Wavelength Calculation of the Principal Band of Substituted Benzene Derivatives...
In accurate work at low concentrations it is necessary to subtract the conductivity of the pure solvent (Table 8.34) from that of the solution to obtain the conductivity due to the electrolyte. [Pg.995]

Possible tape materials include polyimide, polyester, polyethersulfone (PES), and polyparabanic acid (PPA) (18). Of these, polyimide is the most widely used material because its high melting point allows it to survive at temperatures up to 365°C. Although polyester is much cheaper than other materials, its use is limited to temperatures less than 160°C. PES and PPA, on the other hand, are half as cosdy as polyimide, and can survive maximum short-term temperatures of 220 and 275°C, respectively. PES has better dimensional stabiUty than polyimide, absorbs less moisture, and does not tear as easily however, it is inflammable and can be attacked by certain common solvents. Table 7 Hsts various plastic tapes and their properties. Common bump materials are gold, copper, and 95% Pb/5% Sn solder (see Tables 6 and 8 for properties see also References 2 and 21). [Pg.529]

Chemical Resistance of LGPs. Ceitain liquid crystal polymers (eg, Vectra) have extremely high chemical resistance to a variety of aggressive chemicals and solvents. Table 18 shows the chemical stabiUty of Vectra test-bars to various agents (244). [Pg.308]

Along the saturation line and the critical isobar (22.1 MPa (3205 psi)), the dielectric constant of water declines with temperature (see Fig. 10). In the last 24°C below the critical point, the dielectric constant drops precipitously from 14.49 to 4.77 in the next 5°C, it further declines to 2.53 and by 400°C it has declined to 1.86. In the region of the critical point, the dielectric constant of water becomes similar to the dielectric constants of typical organic solvents (Table 6). The solubiHty of organic materials increases markedly in the region near the critical point, and the solubiHty of salts tends to decline as the temperature increases toward the critical temperature. [Pg.369]

Boric acid is quite soluble in many organic solvents (Table 7). Some of these solvents, eg, pyridine, dioxane, and diols, are known to form boric acid... [Pg.192]

Wisniak and Tamir Liquid-Liquid Equilihiium and Extraction A Literature Source Book, Elsevier, Amsterdam, 1980) have hsted many references. Leo, Hansch, and Elkins [Chem. Rev., 71(6), 525 (1971)] have tabulated partition ratios for a large number of solutes between water and solvents. Table 15-5 gives a selec ted list of partition ratios. [Pg.1453]

For synthetic purposes, carbanions are usually generated in ether solvents, often THF or DME. There are relatively few quantitative data available on hydrocarbon acidity in such solvents. Table 7.2 contains a few entries for Cs salts. The numerical values are scaled with reference to the pAT of 9-phenylfluorene. ... [Pg.408]

Epoxy resin paints, inferior to chlorinated rubber for resistance to strong acids, are excellent for dilute acids and strong alkalis. They produce a harder, more abrasion-resistant coating than does chlorinated rubber and are much better for resistance to fats, oils and many organic solvents. Table 3.50 gives data on the chemical resistance of epoxy resin coatings to different materials. [Pg.124]

The.effect of the entropy of activation was noted above for the quaternary pyridine salts (280 and 281). In future work, it may also be found to reflect the electrostatic or hydrogen-bonding interactions in transition states of amination reactions and the effect of reversible cationization of an azine-nitrogen. Brower et observed a substantial rate difference between piperidino-dechlorinations of 2-chloropyrimidine in petroleum ether and in alcohol due partly to the higher entropy of activation in the latter solvent (Table III, lines 3 and 4). [Pg.284]

The proportionality constants in these equations, fcb and kf, are called the moled boiling point constant and the moled freezing point constant, respectively. Their magnitudes depend on the nature of the solvent (Table 10.2). Note that when the solvent is water,... [Pg.269]

One of the most dramatic examples of a solvent effect on propagation taken from the early literature is for vinyl acetate polymerization.78,79 Kamachi el al.n reported a ca. 80-fold reduction in kp (30aC) on shifting from ethyl acetate to benzonilrile solvent (Table 8.1). Effects on polymer structure were also reported. Hatada ef a m conducted a H NMR study on the structure of the PVAc formed in various solvents. They found that PVAc (M n 20000) produced in ethyl acetate solvent has 0.7 branches/chain while that formed in aromatic solvents is essentially unbranched. [Pg.427]

Tests have been conducted with Monsanto high barrier nitrile resins using the common food simulating solvents (Table X) plus some typical beverages. Conditioning times and temperatures were based on applicable FDA regulations and guidelines (16). [Pg.77]

STRATEGY Expect a lower vapor pressure when the solute is present. Calculate the mole fraction of the solvent (water) in the solution and then apply Raoult s law. To use Raoult s law, we need the vapor pressure of the pure solvent (Table 8.2 or 8.3). [Pg.451]

From P = - soivent 5pure and the vapor pressure of pure solvent (Table 8.3),... [Pg.452]

The aqueous medium also has beneficial effects on the diastereoselectivity of the Diels-Alder reactions. The endo addition that occurs in the classical cycloadditions of cyclopentadiene with methyl vinyl ketone and methyl acrylate is more favored when the reaction is carried out in aqueous medium than when it is performed in organic solvents (Table 6.4) [2b, c]. [Pg.255]

Hydroxy-L-prolin is converted into a 2-methoxypyrrolidine. This can be used as a valuable chiral building block to prepare optically active 2-substituted pyrrolidines (2-allyl, 2-cyano, 2-phosphono) with different nucleophiles and employing TiQ as Lewis acid (Eq. 21) [286]. Using these latent A -acylimmonium cations (Eq. 22) [287] (Table 9, No. 31), 2-(pyrimidin-l-yl)-2-amino acids [288], and 5-fluorouracil derivatives [289] have been prepared. For the synthesis of p-lactams a 4-acetoxyazetidinone, prepared by non-Kolbe electrolysis of the corresponding 4-carboxy derivative (Eq. 23) [290], proved to be a valuable intermediate. 0-Benzoylated a-hydroxyacetic acids are decarboxylated in methanol to mixed acylals [291]. By reaction of the intermediate cation, with the carboxylic acid used as precursor, esters are obtained in acetonitrile (Eq. 24) [292] and surprisingly also in methanol as solvent (Table 9, No. 32). Hydroxy compounds are formed by decarboxylation in water or in dimethyl sulfoxide (Table 9, Nos. 34, 35). [Pg.124]

The model has the advantage that it requires only a simple table eontaining the polarity index P and selectivity group for a number of solvents (Table 4.2). The model is based on Snyder s elassifieation of solvents [41,42] aeeording to their eharaeteristies to internet as proton aeeeptors (xj, proton donors (x, or dipoles (xj. [Pg.90]

Applications A limited number of papers refer to the use of AAS in relation to polymer/additive deformulation. Elemental analysis of polymers and rubbers by AAS may be carried out after dissolution in an organic solvent (Table 8.21), after oxidative wet digestion (Table 8.12), after dry ashing (Table 8.22) or directly in the solid state (Table 8.23). [Pg.611]

With all other pieces of the synthesis in place our attention now focused on the final piece in the jigsaw-the asymmetric hydrogenation of the amide enamide 42. Screening of hydrogenation conditions rapidly led to identification of a number of conditions which allowed the desired hydrogenation to proceed at low catalyst loadings and in non-chlorinated solvents (Table 9.9). [Pg.268]

Selection of Solvents. The extraction yield of a low rank coal (Annesley) has been determined after digestion using a selection of solvents (Table II). The results show large variations in solvent power and, in particular, the high extraction yields obtained with hydrogen donor solvents. It is important to differentiate between the ability of a solvent to prevent polymerisation of the dissolved coal by hydrogen transfer, and its ability to retain the dissolved coal in solution. For example, Tetralin is frequently quoted as an... [Pg.127]

We have observed that at short contact times the conversion of bituminous coals is also responsive to the level of H-donor in the solvent. Table IV shows the conversions of an Illinois 6... [Pg.158]

Results showing the effectiveness of the A1- and A2-dialins in coal liquefaction relative to control solvents, naphthalene, Decalin, and fetralin, are presented in Tables 3.1 and 3.2. In both these tables, each row provides the conversion of the coal sample to each of hexane-, benzene-, and pyridine-solubles (plus gases) by the indicated solvent. Table 3.1 contains data derived at a temperature of 400 C and a reaction time of 0.5 hr. Among the control solvents, it can be seen that the naphthalene... [Pg.331]

Photofragmentation Mechanisms. Photolysis (A rr 405 nm) of Ru3(CO)y2 in hydrocarbon solvents under CO gave Ru(C0)5 as the sole product (Equation 1). The quantum yield proved markedly dependent on qq and on the solvent (Table I), with donor solvents such as THF giving much smaller values. Photofragmentation in octane (A rr 405 nm,... [Pg.128]

Tris(0-ethyl dithiocarbonato)chromium(III) is obtained as a dark blue crystalline powder which decomposes at 100 to 140°. The indium(III) ethylxanthate complex forms small colorless crystals which decompose at 130 to 150°.16,17 The cobalt (III) ethylxanthate complex is isolated as a dark green crystalline powder whose decomposition temperature determined by use of a thermal balance is 135 to 137° (lit. value, 117° 2 118 to 119°8). These compounds decompose slowly in air and more rapidly when heated in solution. The tripositive chromium, indium, and cobalt complexes are insoluble in water but are soluble in many organic solvents (Table T). [Pg.52]


See other pages where Solvent table is mentioned: [Pg.368]    [Pg.474]    [Pg.360]    [Pg.72]    [Pg.198]    [Pg.529]    [Pg.1654]    [Pg.341]    [Pg.501]    [Pg.67]    [Pg.295]    [Pg.296]    [Pg.177]    [Pg.501]    [Pg.34]    [Pg.127]    [Pg.56]    [Pg.431]    [Pg.694]    [Pg.696]    [Pg.184]    [Pg.71]    [Pg.125]   
See also in sourсe #XX -- [ Pg.183 ]




SEARCH



Aprotic polar solvents, Table

Common solvents cohesive energy, table

Green industrial solvents table

Of solvents, table

Poly . solvent-nonsolvent tables

Poly solvent-nonsolvent tables, VII

Solvent exchange activation parameters table

Solvent exchange table

Solvent pairs table

Solvent strength, table

Solvent-nonsolvent tables. VII

Solvents for NMR table

Table of organic solvents

Tables of Solvents and Volatile Buffers

© 2024 chempedia.info