Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solvent extraction development

Eluex An early process for extracting uranium from its ores, using both ion-exchange and solvent extraction. Developed by the National Lead Company, United States. [Pg.98]

Truex [Transuranium extraction] A process for removing transuranic elements during the processing of nuclear fuel by solvent extraction. Developed by E. P. Howitz at the Argonne National Laboratory, Chicago, IL. See also SREX. [Pg.275]

Precipitated Th with La-fluoride, clean-up by complexation and solvent extraction, develop color as thorium-morin complex. [Pg.113]

CED [Conversion Extraction Desulfurization] A process for reducing the sulfur content of diesel fuel. Peroxyacetic acid oxidizes the organic sulfur compounds to sulfones, which are removed by solvent extraction. Developed in 2000 by Petro Star. [Pg.68]

Oxychloride A process for making a titanium dioxide concentrate from a low-grade titanium ore. The ore is leached with hydrochloric acid and the iron removed by solvent extraction. Developed by Process Research Ortech and Canadium Titanium Ltd. [Pg.256]

Gadolinium is found in several other minerals, including monazite and bastnasite, both of which are commercially important. With the development of ion-exchange and solvent extraction techniques, the availability and prices of gadolinium and the other rare-earth metals have greatly improved. The metal can be prepared by the reduction of the anhydrous fluoride with metallic calcium. [Pg.187]

The cost of dysprosium metal has dropped in recent years since the development of ion-exchange and solvent extraction techniques, and the discovery of large ore bodies. The metal costs about 300/kg in purities of 99+%. [Pg.192]

Ytterbium occurs along with other rare earths in a number of rare minerals. It is commercially recovered principally from monazite sand, which contains about 0.03%. Ion-exchange and solvent extraction techniques developed in recent years have greatly simplified the separation of the rare earths from one another. [Pg.196]

Different types of other coal liquefaction processes have been also developed to convert coals to liqnid hydrocarbon fnels. These include high-temperature solvent extraction processes in which no catalyst is added. The solvent is usually a hydroaromatic hydrogen donor, whereas molecnlar hydrogen is added as a secondary source of hydrogen. Similar but catalytic liquefaction processes use zinc chloride and other catalysts, usually under forceful conditions (375-425°C, 100-200 atm). In our own research, superacidic HF-BFo-induced hydroliquefaction of coals, which involves depolymerization-ionic hydrogenation, was found to be highly effective at relatively modest temperatnres (150-170°C). [Pg.132]

Extraction, a unit operation, is a complex and rapidly developing subject area (1,2). The chemistry of extraction and extractants has been comprehensively described (3,4). The main advantage of solvent extraction as an industrial process Hes in its versatiHty because of the enormous potential choice of solvents and extractants. The industrial appHcation of solvent extraction, including equipment design and operation, is a subject in itself (5). The fundamentals and technology of metal extraction processes have been described (6,7), as has the role of solvent extraction in relation to the overall development and feasibiHty of processes (8). The control of extraction columns has also been discussed (9). [Pg.60]

Dual solvent fractional extraction (Fig. 7b) makes use of the selectivity of two solvents (A and B) with respect to consolute components C and D, as defined in equation 7. The two solvents enter the extractor at opposite ends of the cascade and the two consolute components enter at some point within the cascade. Solvent recovery is usually an important feature of dual solvent fractional extraction and provision may also be made for reflux of part of the product streams containing C or D. Simplified graphical and analytical procedures for calculation of stages for dual solvent extraction are available (5) for the cases where is constant and the two solvents A and B are not significantly miscible. In general, the accurate calculation of stages is time-consuming (28) but a computer technique has been developed (56). [Pg.67]

In order to maintain a definite contact area, soHd supports for the solvent membrane can be introduced (85). Those typically consist of hydrophobic polymeric films having pore sizes between 0.02 and 1 p.m. Figure 9c illustrates a hoUow fiber membrane where the feed solution flows around the fiber, the solvent—extractant phase is supported on the fiber wall, and the strip solution flows within the fiber. Supported membranes can also be used in conventional extraction where the supported phase is continuously fed and removed. This technique is known as dispersion-free solvent extraction (86,87). The level of research interest in membrane extraction is reflected by the fact that the 1990 International Solvent Extraction Conference (20) featured over 50 papers on this area, mainly as appHed to metals extraction. Pilot-scale studies of treatment of metal waste streams by Hquid membrane extraction have been reported (88). The developments in membrane technology have been reviewed (89). Despite the research interest and potential, membranes have yet to be appHed at an industrial production scale (90). [Pg.70]

The development of the novel Davy-McKee combined mixer—settler (CMS) has been described (121). It consists of a single vessel (Fig. 13d) in which three 2ones coexist under operating conditions. A detailed description of units used for uranium recovery has been reported (122), and the units have also been studied at the laboratory scale (123). AppHcation of the Davy combined mixer electrostatically assisted settler (CMAS) to copper stripping from an organic solvent extraction solution has been reported (124). [Pg.75]

A process developed in Israel (263) uses solvent extraction using a higher alcohol or other solvating solvent. This removes phosphoric acid and some hydrochloric acid from the system driving the equiHbrium of equation 42 to the right. The same principle can be appHed in other salt—acid reactions of the form... [Pg.81]

S. Alegret, ed.. Developments in Solvent Extraction Ellis Horwood, Chichester, UK, 1988. [Pg.82]

Mechanical Pressing. Historically, the first large commercial production of oils from seeds and nuts was carried out using labor-intensive hydraulic presses. These were gradually replaced by more efficient mechanical and screw presses. Solvent extraction was developed for extraction of seeds having low oil content. For seeds and nuts having higher oil content, a combination of a screw press followed by solvent extraction is a common commercial practice (prepress—solvent extraction). [Pg.129]

Israel Mining Industries developed a process in which hydrochloric acid, instead of sulfuric acid, was used as the acidulant (37). The acidulate contained dissolved calcium chloride which then was separated from the phosphoric acid by use of solvent extraction using a recyclable organic solvent. The process was operated commercially for a limited time, but the generation of HCl fumes was destmctive to production equipment. [Pg.225]

Nitric acid acidulation of phosphate rock produces phosphoric acid, together with dissolved calcium nitrate. Separation of the phosphoric acid for use as an intermediate in other fertilizer processes has not been developed commercially. Solvent extraction is less effective in the phosphoric—nitric system than in the phosphoric—hydrochloric system. Instead, the nitric acid acidulate is processed to produce nitrophosphate fertilizers. [Pg.225]

Solvent Resistance. Elastomeric fibers tend to swell in certain organic solvents mbber fibers swell in hydrocarbon solvents such as hexane. Spandex fibers become highly swollen in chlorinated solvents such as tetrachloroethylene [127-18-4] (Perclene). Although the physical properties of spandex fibers return to normal after the solvent evaporates, considerable amounts of its stabilizers may have been extracted. Therefore, the development of stabilizers that are more resistant to solvent extraction has become important as solvent scouring during mill processing replaces aqueous scouring at many mills, especially in Europe (26). [Pg.309]

The electrowinning process developed by Ginatta (34) has been purchased by M.A. Industries (Atlanta, Georgia), and the process is available for licensing (qv). MA Industries have also developed a process to upgrade the polypropylene chips from the battery breaking operation to pellets for use by the plastics industry. Additionally, East Penn (Lyons Station, Pennsylvania), has developed a solvent-extraction process to purify the spent acid from lead—acid batteries and use the purified acid in battery production (35). [Pg.50]

An improved solvent extraction process, PUREX, utilizes an organic mixture of tributyl phosphate solvent dissolved in a hydrocarbon diluent, typically dodecane. This was used at Savannah River, Georgia, ca 1955 and Hanford, Washington, ca 1956. Waste volumes were reduced by using recoverable nitric acid as the salting agent. A hybrid REDOX/PUREX process was developed in Idaho Falls, Idaho, ca 1956 to reprocess high bum-up, fuUy enriched (97% u) uranium fuel from naval reactors. Other separations processes have been developed. The desirable features are compared in Table 1. [Pg.202]

Exceptions to the simple definition of an essential oil are, for example, gadic oil, onion oil, mustard oil, or sweet birch oils, each of which requires enzymatic release of the volatile components before steam distillation. In addition, the physical process of expression, appHed mostly to citms fmits such as orange, lemon, and lime, yields oils that contain from 2—15% nonvolatile material. Some flowers or resinoids obtained by solvent extraction often contain only a small portion of volatile oil, but nevertheless are called essential oils. Several oils are dry-distiUed and also contain a limited amount of volatiles nonetheless they also are labeled essential oils, eg, labdanum oil and balsam oil Pern. The yield of essential oils from plants varies widely. Eor example, nutmegs yield 10—12 wt % of oil, whereas onions yield less than 0.1% after enzymatic development. [Pg.296]

The early developments of solvent processing were concerned with the lubricating oil end of the cmde. Solvent extraction processes are appHed to many usefiil separations in the purification of gasoline, kerosene, diesel fuel, and other oils. In addition, solvent extraction can replace fractionation in many separation processes in the refinery. For example, propane deasphalting (Fig. 7) has replaced, to some extent, vacuum distillation as a means of removing asphalt from reduced cmde oils. [Pg.208]

Although phosphine [7803-51-2] was discovered over 200 years ago ia 1783 by the French chemist Gingembre, derivatives of this toxic and pyrophoric gas were not manufactured on an industrial scale until the mid- to late 1970s. Commercial production was only possible after the development of practical, economic processes for phosphine manufacture which were patented in 1961 (1) and 1962 (2). This article describes both of these processes briefly but more focus is given to the preparation of a number of novel phosphine derivatives used in a wide variety of important commercial appHcations, for example, as flame retardants (qv), flotation collectors, biocides, solvent extraction reagents, phase-transfer catalysts, and uv photoinitiators. [Pg.317]

The purified acid is recovered from the loaded organic stream by contacting with water in another countercurrent extraction step. In place of water, an aqueous alkafl can be used to recover a purified phosphate salt solution. A small portion of the purified acid is typically used in a backwashing operation to contact the loaded organic phase and to improve the purity of the extract phase prior to recovery of the purified acid. Depending on the miscibility of the solvent with the acid, the purified acid and the raffinate may be stripped of residual solvent which is recycled to the extraction loop. The purified acid can be treated for removal of residual organic impurities, stripped of fluoride to low (10 ppm) levels, and concentrated to the desired P2 s Many variations of this basic scheme have been developed to improve the extraction of phosphate and rejection of impurities to the raffinate stream, and numerous patents have been granted on solvent extraction processes. [Pg.328]

Solvent Extraction Technology. The use of solvent extraction technology to replace traditional processes has been the subject of considerable research and development effort since the 1970s (12,14—21). This newer technique was being used commercially as of 1995 in at least three of the principal refineries. [Pg.168]

Solvent Extraction. The industrial separation of tantalum from niobium was carried out historicahy by the Marignac process of fractional crystallization of potassium heptafluorotantalate and potassium heptafluoroniobate (15,16) or the long-estabhshed Fansteel process (17), which involved the decomposition of the ore by a caustic fusion procedure. Processors have replaced these expensive processes by procedures based on solvent extraction. This technique was developed in the United States at Ames Laboratory and the U.S. Bureau of Mines (18). Figure 2 shows the flow sheet of an industrial instahation for the hydrometahurgical processing of tantalum—niobium raw materials. [Pg.325]


See other pages where Solvent extraction development is mentioned: [Pg.638]    [Pg.638]    [Pg.53]    [Pg.60]    [Pg.70]    [Pg.80]    [Pg.130]    [Pg.163]    [Pg.89]    [Pg.279]    [Pg.93]    [Pg.158]    [Pg.202]    [Pg.202]    [Pg.3]    [Pg.373]    [Pg.392]    [Pg.127]    [Pg.345]    [Pg.41]   
See also in sourсe #XX -- [ Pg.5 , Pg.60 ]




SEARCH



Extractants development

Solvent developing

Solvents development

© 2024 chempedia.info