Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solvent extraction common solvents

The International Union of Pure and Applied Chemistry (IUPAC) recommends the use of liquid-liquid distribution rather than the traditional term, solvent extraction. However, solvent extraction is still used commonly in the literature, and that is why it is also being used here interchangeably (Chapter 7). Solvent extraction utilizes the partition of a solute between two practically immiscible liquid phases—one a solvent phase and the other an aqueous phase. Liquid-liquid partitioning methods are important separation tools in modern biotechnology. They have become increasingly popular as part of a... [Pg.9]

However, in general, solvent recovery is an important step in the overall solvent extraction process. Solvent recovery from the raffinate (i.e., water phase) may be accomplished by stripping, distillation, or adsorption. The extract, or solute-laden solvent stream, may also be processed to recover solvent via removal of the solute. The solute removal and solvent recovery step may include reverse solvent extraction, distillation, or some other process. For example, an extraction with caustic extracts phenol from light oil, which was used as the solvent in dephenolizing coke plant wastewaters (4). The caustic changes the affinity of the solute (phenol) for the solvent (light oil) in comparison to water as will be explained in the equilibrium conditions section. Distillation is more common if there are no azeotropes. [Pg.583]

Concentration of the extracts Common solvent evaporation techniques that are acceptable for use in pollutant analysis include the following ... [Pg.4996]

Phenols are an important group of phytochemicals with significant health beneficial effects. Extraction of phenols firom the biological sources is a growing field of interest and is an integrated part of analytical methods. Some of the common methods of extraction of phenolic compounds are solvent extraction, accelerated solvent extraction, supercritical fluid extraction, ultrasonic extraction, and microwave extractimi. Separation is the next important step of analytical methods, which is done to separate the required phenolic components from the unwanted part of the extract. In case of phenols, methods such as... [Pg.2013]

There are of course liquid-liquid equilibria between hydrocarbons and substances other than water. In practice these equilibria are used in solvent extraction processes. The solvents most commonly used are listed as follows ... [Pg.171]

Volatile analytes can be separated from a nonvolatile matrix using any of the extraction techniques described in Ghapter 7. Fiquid-liquid extractions, in which analytes are extracted from an aqueous matrix into methylene chloride or other organic solvent, are commonly used. Solid-phase extractions also are used to remove unwanted matrix constituents. [Pg.567]

The importance of minimizing interferents is emphasized. Commonly used methods for separating interferents from analytes, such as distillation, masking, and solvent extraction, are gathered together in a single chapter. [Pg.813]

Aromatic and Nonaromatic Hydrocarbon Separation. Aromatics are partially removed from kerosines and jet fuels to improve smoke point and burning characteristics. This removal is commonly accompHshed by hydroprocessing, but can also be achieved by Hquid-Hquid extraction with solvents, such as furfural, or by adsorptive separation. Table 7 shows the results of a simulated moving-bed pilot-plant test using siHca gel adsorbent and feedstock components mainly in the C q—range. The extent of extraction does not vary gready for each of the various species of aromatics present. SiHca gel tends to extract all aromatics from nonaromatics (89). [Pg.300]

Miscellaneous Pharmaceutical Processes. Solvent extraction is used for the preparation of many products that ate either isolated from naturally occurring materials or purified during synthesis. Among these are sulfa dmgs, methaqualone [72-44-6] phenobarbital [50-06-6] antihistamines, cortisone [53-06-5] estrogens and other hormones (qv), and reserpine [50-55-5] and alkaloids (qv). Common solvents for these appHcations are chloroform, isoamyl alcohol, diethyl ether, and methylene chloride. Distribution coefficient data for dmg species are important for the design of solvent extraction procedures. These can be determined with a laboratory continuous extraction system (AKUEVE) (244). [Pg.79]

Mechanical Pressing. Historically, the first large commercial production of oils from seeds and nuts was carried out using labor-intensive hydraulic presses. These were gradually replaced by more efficient mechanical and screw presses. Solvent extraction was developed for extraction of seeds having low oil content. For seeds and nuts having higher oil content, a combination of a screw press followed by solvent extraction is a common commercial practice (prepress—solvent extraction). [Pg.129]

The principal route for production of isoprene monomer outside of the CIS is recovery from ethylene by-product C streams. This route is most viable where ethylene is produced from naphtha or gas oil and where several ethylene plants are located in relatively close proximity to the isoprene plant. Although the yield of isoprene per mass of ethylene is quite low, there is enough ethylene produced to provide a large portion of demand. Because of the presence of / -pentane in these streams which a2eotropes with isoprene, extractive distillation must be used to recover pure isoprene. Acetonitrile is the most common solvent, but dimethylformamide is also used commercially. [Pg.468]

The batch and fed-batch procedures are used for most commercial antibiotic fermentations. A typical batch fermentor may hold over 150,000 Hters. When a maximum yield of antibiotic is obtained, the fermentation broth is processed by purification procedures tailored for the specific antibiotic being produced. Nonpolar antibiotics are usually purified by solvent extraction procedures water-soluble compounds are commonly purified by ion-exchange methods. Chromatography procedures can readily provide high quaHty material, but for economic reasons chromatography steps are avoided if possible. [Pg.475]

Solvent Extraction. Extraction processes, used for separating one substance from another, are commonly employed in the pharmaceutical and food processing industries. Oilseed extraction is the most widely used extraction process on the basis of tons processed. Extraction-grade hexane is the solvent used to extract soybeans, cottonseed, com, peanuts, and other oilseeds to produce edible oils and meal used for animal feed supplements. Tight specifications require a narrow distillation range to minimize solvent losses as well as an extremely low benzene content. The specification also has a composition requirement, which is very unusual for a hydrocarbon, where the different components of the solvent must be present within certain ranges (see Exthaction). [Pg.280]

Recovery of Uranium from Leach Solutions. The uranium can be recovered from leach solutions using a variety of approaches including ion exchange (qv), solvent extraction, and chemical precipitation. The most common methods in practice are ion exchange and solvent extraction to purify and concentrate the uranium prior to final product precipitation. [Pg.317]

Cementation. Cementation is the precipitation of copper from copper leach solutions by replacement with iron. It was formerly the most commonly used method of recovering copper from leach solutions but has been replaced by solvent extraction—electro winning. The type of iron used ia cementation is important, and the most widely used material is detinned, light-gauge, shredded scrap iron. This operation can be performed by the scrap iron cone (Keimecott Precipitation Cone) or a vibrating cementation mill that combines high copper precipitation efficiency and reduced iron consumption (41). [Pg.206]

These acids are less stable, less soluble and less acidic than the corresponding sulfonic acids. The common impurities are the respective sulfonyl chlorides from which they have been prepared, and the thiolsulfonates (neutral) and sulfonic acids into which they decompose. The first two of these can be removed by solvent extraction from an alkaline solution of the acid. On acidification of an alkaline solution, the sulfinic acid crystallises out leaving the sulfonic acid behind. The lower molecular weight members are isolated as their metal (e.g. ferric) salts, but the higher members can be crystallised from water (made slightly acidic), or alcohol. [Pg.62]

Solvent Extraction - Solvent extraction uses solvents to dissolve and remove aromatics from lube oil feed stocks, improving viscosity, oxidation resistance, color, and gum formation. A number of different solvents are used, with the two most common being furfural and phenol. Typically, feed lube stocks are contacted with the solvent in a packed tower or rotating disc contactor. Each solvent has a different solvent-to-oil ratio and recycle ratio within the tower. [Pg.93]

An additional example of Eq. (2.2) is the distribution function commonly used in solvent extraction ... [Pg.19]

Other properties of solvents which need to be considered are boiling point, viscosity (lower viscosity generally gives greater chromatographic efficiency), detector compatibility, flammability, and toxicity. Many of the common solvents used in HPLC are flammable and some are toxic and it is therefore advisable for HPLC instrumentation to be used in a well-ventilated laboratory, if possible under an extraction duct or hood. [Pg.222]

Separation techniques may have to be applied if the given sample contains substances which act as interferences (Section 21.10), or, as explained above, if the concentration of the element to be determined in the test solution is too low to give satisfactory absorbance readings. As already indicated (Section 21.10), the separation methods most commonly used in conjunction with flame spectrophotometric methods are solvent extraction (see Chapter 6) and ion exchange (Chapter 7). When a solvent extraction method is used, it may happen that the element to be determined is extracted into an organic solvent, and as discussed above it may be possible to use this solution directly for the flame photometric measurement. [Pg.802]


See other pages where Solvent extraction common solvents is mentioned: [Pg.35]    [Pg.102]    [Pg.321]    [Pg.167]    [Pg.162]    [Pg.72]    [Pg.313]    [Pg.413]    [Pg.81]    [Pg.129]    [Pg.443]    [Pg.332]    [Pg.320]    [Pg.298]    [Pg.373]    [Pg.152]    [Pg.305]    [Pg.165]    [Pg.206]    [Pg.254]    [Pg.180]    [Pg.2143]    [Pg.2143]    [Pg.325]    [Pg.554]    [Pg.1276]    [Pg.980]    [Pg.172]    [Pg.57]    [Pg.86]   
See also in sourсe #XX -- [ Pg.5 ]




SEARCH



Common solvents

© 2024 chempedia.info