Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Antibiotics commercialization

As occurred with the other antibiotics, commercial immunoassay formats, also available as kits for tetracyclines and penicillins such as the Parallux, the LacTek, or the Charm II, have also been placed on the market for the analysis of sulfonamides (see Table 4). Thus, the Parallux detects sulfamethazine and sulfadimethoxine in raw milk with a LOD of 10 pg L1. The Charm II detects almost all sulfonamides in honey and milk with a LOD in the range from 1 to 10 pg L, whereas LacTek is able to detect sulfamethazine. Moreover, the 5101SULlp and 5101SUDAlp tests reach LOD values for sulfamethazine and sulfadiazine of around 0.2 pg L 1 and they have been applied to the analysis of urine, milk, and plasma. These tests have proved to be efficient as a point of care for on-site applications on farms. Moreover, commercially available antibodies can be found from several sources such as Silver Lake Research, US Biological, Cortex Biochem. Inc., Accurate Chemical Scientific, Fitzgerald Industries International Inc., and Biotrend Chemikalien GmbH. [Pg.215]

Most of the antibiotics commercially available nowadays are derivatives of natural compounds produced by bacteria or fungi. It is widely accepted that in nature these secondary metabolites can act as weapons for microbial cell defence, inhibiting the growth of competitors. However, it seems that antibiotics have, in nature, more sophisticated and complex functions [1-3]. Many environmental bacteria can not only cope with natural antimicrobial substances but also benefit from their presence. For instance, the use of antibiotics by bacteria as biochemical signals, modulators of metabolic activity or even carbon sources has been demonstrated [1, 2, 4]. In other cases, antibiotics can be tolerated because they have structures similar to the natural substrates of bacterial housekeeping enzymes and thus are inactivated, leading to a natural form of resistance [2]. These are just some... [Pg.177]

Owing to the increasing importance of semi-synthetic antibiotics, commercially feasible routes are of the utmost importance and several methods have been developed. [Pg.730]

Figure 2 Currently commercialized antibiotics shown in the years in which they were first reported (either by patent application or publication) in five-year blocks from 1945 to 1995. The contributions of natural product antibiotics (solid), semisynthetic antibiotics (shaded), and chemically synthesized antibiotics (hatched) to the totals are indicated. Data are taken from those antibiotics listed in the Appendix and are not necessarily inclusive of all antibiotics commercialized worldwide. Figure 2 Currently commercialized antibiotics shown in the years in which they were first reported (either by patent application or publication) in five-year blocks from 1945 to 1995. The contributions of natural product antibiotics (solid), semisynthetic antibiotics (shaded), and chemically synthesized antibiotics (hatched) to the totals are indicated. Data are taken from those antibiotics listed in the Appendix and are not necessarily inclusive of all antibiotics commercialized worldwide.
Although a tremendous number of fermentation processes have been researched and developed to various extents, only a couple of hundred ate used commercially. Fermentation industries have continued to expand in terms of the number of new products on the market, the total volume (capacity), and the total sales value of the products. The early 1990s U.S. market for fermentation products was estimated to be in the 9-10 x 10 range. The total world market is probably three times that figure, and antibiotics continue to comprise a primary share of the industry. Other principal product categories are enzymes, several organic acids, baker s yeast, ethanol (qv), vitamins (qv), and steroid hormones (qv). [Pg.177]

The modem fermentation industries developed from the early era of antibiotics. Over 4000 antibiotics have been discovered since the 1950s. However, only about 100 are produced on a commercial scale and over 40 of these are prepared by a combination of microbial synthesis and chemical modifications. Antibiotics produced by fermentation and used as starting materials in chemical syntheses are given in Table 2. [Pg.178]

In pharmaceutical appHcations, the selectivity of sodium borohydride is ideally suited for conversion of high value iatermediates, such as steroids (qv), ia multistep syntheses. It is used ia the manufacture of a broad spectmm of products such as analgesics, antiarthritics, antibiotics (qv), prostaglandins (qv), and central nervous system suppressants. Typical examples of commercial aldehyde reductions are found ia the manufacture of vitamin A (29) (see Vitamins) and dihydrostreptomycia (30). An acyl azide is reduced ia the synthesis of the antibiotic chloramphenicol (31) and a carbon—carbon double bond is reduced ia an iatermediate ia the manufacture of the analgesic Talwia (32). [Pg.304]

Pharmaceuticals. -Hydroxybenzaldehyde is often a convenient intermediate in the manufacture of pharmaceuticals (qv). For example, 2-(p-hydroxyphenyl)glycine can be prepared in a two-step synthesis starting with -hydroxybenzaldehyde (86). This amino acid is an important commercial intermediate in the preparation of the semisynthetic penicillin, amoxicillin (see ANTIBIOTICS, P-LACTAMs). Many cephalosporin-type antibiotics can be made by this route as well (87). The antiemetic trimethobenzamide [138-56-7] is convenientiy prepared from -hydroxybenzaldehyde (88) (see Gastrointestinal agents). [Pg.508]

Cyanide Wastes. Ozone is employed as a selective oxidant in laboratory-scale synthesis (7) and in commercial-scale production of specialty organic chemicals and intermediates such as fragrances, perfumes (qv), flavors, antibiotics (qv), hormones (qv), and vitamins (qv). In Japan, several metric tons per day (t/d) of piperonal [120-57-0] (3,4-methylenedioxybenzaldehyde) is manufactured in 87% yield via ozonolysis and reduction of isosafrole [93-16-3], Piperonal (or heHotropine [120-57-0]) has a pleasant odor and is used in perfumery. Oleic acid [112-80-1/, CH3(CH2 )7CH—CH(CH2 ). C02H, from tall oil (qv) is ozonated on a t/d scale to produce pelargonic, GgH2yG02H, and azelaic, H02G(GH2)yG02H, acids. Oleic acid also is ozonated in Japan... [Pg.502]

In 1939 the isolation of a mixture of microbial products named tyrotbricin from a soil bacillus was described. Further investigation showed this material to be a mixture of gramicidin and tyrocidine. In rapid succession the isolation of actinomycin (1940), streptothricin (1942), streptomycin (1943), and neomycin (1949), produced by Streptomjces were reported and in 1942 the word antibiotic was introduced. Chloramphenicol, the first of the so-called broad spectmm antibiotics having a wide range of antimicrobial activity, was discovered in 1947. Aureomycin, the first member of the commercially important tetracycline antibiotics, was discovered in 1948. [Pg.473]

A chemical classification of some of the commercially more important antibiotic families that is generally consistent with the scheme of reference 12, is given here (2). [Pg.474]

P-Lactams. AH 3-lactams are chemically characterized by having a 3-lactam ring. Substmcture groups are the penicillins, cephalosporias, carbapenems, monobactams, nocardicias, and clavulanic acid. Commercially this family is the most important group of antibiotics used to control bacterial infections. The 3-lactams act by inhibition of bacterial cell wall biosynthesis. [Pg.474]

Polyethers. Antibiotics within this family contain a number of cycHc ether and ketal units and have a carboxyHc acid group. They form complexes with mono- and divalent cations that ate soluble ia aoapolar organic solvents. They iateract with bacterial cell membranes and allow cations to pass through the membranes causiag cell death. Because of this property they have been classified as ionophores. Monensia, lasalocid, and maduramicia are examples of polyethers that are used commercially as anticoccidial agents ia poultry and as growth promotants ia mmiaants. [Pg.474]

Tetracyclines. The tetracycliaes are a small group of antibiotics characterized as containing a polyhydronaphthacene nucleus. Commercially the tetracyclines are very important. They have been used clinically against gram-positive and gram-negative bacteria, spirochete, mycoplasmas, and rickettsiae... [Pg.474]

The batch and fed-batch procedures are used for most commercial antibiotic fermentations. A typical batch fermentor may hold over 150,000 Hters. When a maximum yield of antibiotic is obtained, the fermentation broth is processed by purification procedures tailored for the specific antibiotic being produced. Nonpolar antibiotics are usually purified by solvent extraction procedures water-soluble compounds are commonly purified by ion-exchange methods. Chromatography procedures can readily provide high quaHty material, but for economic reasons chromatography steps are avoided if possible. [Pg.475]

Most of the new commercial antibiotics have resulted from semisynthetic studies. New cephalosporkis, a number of which are synthesized by acylation of fermentation-derived 7-amkiocephalosporanic acid, are an example. Two orally active cephalosporkis called cefroxadine and cephalexin are produced by a synthetic ring-expansion of penicillin V. [Pg.475]

The development of new antibiotics to combat resistance, and to provide easier oral administration and improved pharmacokinetics has been successful through synthetic modifications. This approach has been particularly rewarding in the area of P-lactams. The commercial importance of the P-lactams is evident from Table 3 which gives the market share of antibacterials. Fully 62% of the 1989 world antibacterial market belonged to the cephalosporin and penicillin P-lactams (20). [Pg.476]

Derivatiziag an organic compound for analysis may require only a few drops of reagent selected from silylatiag kits suppHed by laboratory supply houses. Commercial syathesis of penicillins requires silylatiag ageats purchased ia tank cars from the manufacturer (see Antibiotics, P-LACTAMS-penicillins AND others). [Pg.70]

Commercially available yeast extracts are made from brewers yeast, from bakers yeast, from alcohol-grown yeast (C. utilis) and from whey grown yeast (K fragilis). Extracts are used ia fermentation media for productioa of antibiotics, ia cheese starter cultures, and ia the productioa of viaegar. They are also exteasively used ia the food iadustry as condiments to provide savory flavors for soups, gravies and bouillon cubes, and as flavor intensifiers ia cheese products. [Pg.394]

Extensive carbapenem and penem antibiotic research has been ongoing since thienamycin was discovered in 1978. However, only the imipenem-cilastatin combination has become a commercial product. Launched in 1985 in the United States as a broad-spectmm hospital product under the name Ptimaxin, this product had worldwide sales of some 300 million in 1988. Sales were predicted to rise to 345 million for the year ending 1989 (154). [Pg.15]

Fermentation. The commercial P-lactam antibiotics which act as starting material for all of the cephalosporins ate produced by submerged fermentation. The organisms used for the commercial production of the penicillins and cephalosporins ate mutants of PenicU/in chTysogenum and Cephalosporium acremonium respectively (3,153,154). Both ate tme fungi (eucaryotes). In contrast, the cephamycins ate produced by certain species of procaryotic Streptomyces including Streptomyces clavuligerus and Streptomyces lipmanii (21,103). [Pg.31]

H. Kleinkanf and H. von Dithren, in L. C. Vining, ed.. Biochemistry and Genetic Regulation of Commercially Important Antibiotics, Addison-Wesley, Reading, Mass., 1983, p. 95. [Pg.161]

The polyether antibiotics were first recognized as a separate class with the pubHcation of the structure of monensia ia 1967 (1). Several members of the group have siace found commercial appHcation as anticoccidials ia poultry farming and ia improvement of feed efficiency for mmiaants (see Feeds and FEED additives). [Pg.166]

The polyether antibiotics exhibit a broad range of biological, antibacterial, antifungal, antiviral, anticoccidial, antiparasitic, and insecticidal activities. They improve feed efficiency and growth performance in mminant and monogastric animals. Only the anticoccidial activity in poultry and catde, and the effect on feed efficiency in mminants such as catde and sheep are of commercial interest. [Pg.171]


See other pages where Antibiotics commercialization is mentioned: [Pg.3260]    [Pg.207]    [Pg.58]    [Pg.3260]    [Pg.207]    [Pg.58]    [Pg.163]    [Pg.312]    [Pg.55]    [Pg.177]    [Pg.178]    [Pg.178]    [Pg.184]    [Pg.339]    [Pg.249]    [Pg.24]    [Pg.243]    [Pg.469]    [Pg.473]    [Pg.474]    [Pg.511]    [Pg.530]    [Pg.496]    [Pg.71]    [Pg.425]    [Pg.9]    [Pg.74]    [Pg.146]    [Pg.160]    [Pg.160]   
See also in sourсe #XX -- [ Pg.2 ]




SEARCH



Antibiotic uses of four commercially available polyenes

Commercially Available ELISA Kits for Antibiotic Residues

© 2024 chempedia.info