Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solubility optimisation

Methoprene and hydroprene are first-generation juvenoids that iacorporate minor stmctural optimisation of neotenin to increase persistence. Methoprene, 1-isopropyl (E,E)-ll-methoxy-3,7,ll-tnmethyl dodecadi-2,4-enoate (129) (bp 100 C/6.7 Pa, vp 3.5 mPa at 25°C), is soluble ia water to 1.4 mg/L. The rat oral LD q is >34,000 mg/kg. Methoprene has been used as a mosquito larvicide, ia baits for ant control, and as a catde feed-through treatment for horn fly control. Hydroprene, methyl (H,H)-3,7,ll-trimethyl-dodecadi-2,4-enoate (130) (bp 174°C at 2.5 kPa, vp 2.5 mPa at 25°C), is soluble ia water to 0.54 mg/L. The rat oral LD q is >34,000 mg/kg. Hydroprene is especially effective against aphids and cockroaches. [Pg.294]

Various extraction methods for phenolic compounds in plant material have been published (Ayres and Loike, 1990 Arts and Hollman, 1998 Andreasen et ah, 2000 Fernandez et al., 2000). In this case phenolic compounds were an important part of the plant material and all the published methods were optimised to remove those analytes from the matrix. Our interest was to find the solvents to modily the taste, but not to extract the phenolic compounds of interest. In each test the technical treatment of the sample was similar. Extraction was carried out at room temperature (approximately 23 °C) for 30 minutes in a horizontal shaker with 200 rpm. Samples were weighed into extraction vials and solvent was added. The vials were closed with caps to minimise the evaporation of the extraction solvent. After 30 minutes the samples were filtered to separate the solvent from the solid. Filter papers were placed on aluminium foil and, after the solvent evaporahon, were removed. Extracted samples were dried at 100°C for 30 minutes to evaporate all the solvent traces. The solvents tested were chloroform, ethanol, diethylether, butanol, ethylacetate, heptane, n-hexane and cyclohexane and they were tested with different solvent/solid ratios. Methanol (MeOH) and acetonitrile (ACN) were not considered because of the high solubility of catechins and lignans to MeOH and ACN. The extracted phloem samples were tasted in the same way as the heated ones. Detailed results from each extraction experiment are presented in Table 14.2. [Pg.283]

Various models of SFE have been published, which aim at understanding the kinetics of the processes. For many dynamic extractions of compounds from solid matrices, e.g. for additives in polymers, the analytes are present in small amounts in the matrix and during extraction their concentration in the SCF is well below the solubility limit. The rate of extraction is then not determined principally by solubility, but by the rate of mass transfer out of the matrix. Supercritical gas extraction usually falls very clearly into the class of purely diffusional operations. Gere et al. [285] have reported the physico-chemical principles that are the foundation of theory and practice of SCF analytical techniques. The authors stress in particular the use of intrinsic solubility parameters (such as the Hildebrand solubility parameter 5), in relation to the solubility of analytes in SCFs and optimisation of SFE conditions. [Pg.85]

In reality, finding a suitable solvent is not as easy as simply matching the polymer s solubility parameter (8 value). It is also important to take into account the effects of polymer crystallinity (as in the case of aPP and iPP, LDPE and HDPE). Because of their various chemical structures, it may be necessary to experiment with solvent, temperature, and time conditions to optimise the extraction strategy. [Pg.148]

The main characteristics of FAB-MS are indicated in Table 6.15. FAB ionisation is relatively simple to perform. However, parameter optimisation and data interpretation of the resulting FAB spectra can be complex. Matrix selection for additive analysis is crucial. Solubility of the additives in the matrix is essential for production of viable spectra. FAB/FIB is well suited to organic compounds which exhibit some polarity, and contain either acidic and/or basic functional groups. Compounds with basic groups run well in positive ionisation mode, and those with acidic centres run well in the negative ionisation... [Pg.369]

Some laboratories have found an alternative to the short-term cultures by using cell lines other than Caco-2 cells. The most popular of these is Madin-Darby canine kidney (MDCK) cells, an epithelial cell line from the dog kidney. MDCK cells have been suggested to perform as well as Caco-2 cells in studies of passive drug permeability [56]. These cells have also been used to optimise the conditions for studies of low-solubility drugs [53]. However, as noted previously, the active transport processes of this cell line can be quite different to those of Caco-2 cells [28-30], Another cell line that only requires short-term culture is 2/4/A1, which is a conditionally immortalised rat intestinal epithelial cell line [86]. The 2/4/A1 cell line is discussed in Section 4.3.2.2 below. [Pg.77]

The use of soluble zinc soap activators such as zinc 2-ethyl hexanoate instead of conventional stearic acid gives efficiency of vulcanisation and ensures that stress relaxation and creep properties are optimised. Zinc soaps, including the new high efficiency activating types, do not bloom from the compound, either during processing or subsequently during service. [Pg.158]

Statham [448] has optimised a procedure based on chelation with ammonium dithiocarbamate and diethylammonium diethyldithiocarbamate for the preconcentration and separation of dissolved manganese from seawater prior to determination by graphite furnace atomic absorption spectrometry. Freon TF was chosen as solvent because it appears to be much less toxic than other commonly used chlorinated solvents, it is virtually odourless, has a very low solubility in seawater, gives a rapid and complete phase separation, and is readily purified. The concentrations of analyte in the back-extracts are determined by graphite furnace atomic absorption spectrometry. This procedure concentrates the trace metals in the seawater by a factor of 67.3. [Pg.195]

Since in this mixture design problem we have to identify a mixture whose constituents perform different functions, i.e., the solvent needs to have high solubility for the solute while the anti-solvent needs to reduce the solubility, we have to solve two different single compound design problems (involving subproblem 1M, 2m and 3M) to identify the candidate solvents and anti-solvents. The mutually miscible pairs are identified in sub-problem 4M and the final optimisation problem is solved in sub-problem 5M. [Pg.140]

Until there is a sufficient excess of ethene over [PdH(TPPTS)3] their fast reaction ensures that aU palladium is found in form of tratts-[Pd C(CO)Et (TPPTS)2]. However, at low olefin concentrations (e.g. in biphasic systems with less water-soluble olefins) [PdH(TPPTS)3] can accumulate and through its equihbrium with [Pd(TPPTS)3] (eq. 5.5) can be reduced to metallic palladium. This is why the hydroxycarbonylation of olefins proceeds optimally in the presence of Brpnsted acid cocatalyts with a weekly coordinating anion. Under optimised conditions hydrocarboxylation of propene was catalyzed by PdC + TPPTS with a TOE = 2507 h and l = 57/43 (120 °C, 50 bar CO, [P]/[Pd] = 4, P-CH3C6H4SO3H) [38], In neutral or basic solutions, or in the presence of strongly coordinatmg anions the initial hydride complex cannot be formed, furthermore, the fourth coordination site in the alkyl- and acylpaUadium intermediates may be strongly occupied, therefore no catalysis takes place. [Pg.156]

Examples of such effects are the SubChem cases for the substitution of DEHP as a plasticiser in PVC by other phthalates (instead of switching over to underbody hard shells), optimisation of formulations in water-soluble cooling lubricants (instead of switching over to minimum quantity lubrication) or the use of water-based flexographic inks (instead of switching over to UV-drying printing inks). [Pg.107]

There is an increasing focus on trying to select more easily developable molecules at an early stage, so that the chance of failure at the very expensive later phases is minimised. Pharmaceutical companies therefore decide on which properties of a new molecule are key to faster development, for example, selection of soluble compounds to facilitate formulation. Amongst these is the selection of molecules with low or acceptable toxicity. Thus, a company may decide to develop high-throughput in vitro screens for cytotoxicity for use at the lead optimisation stage. [Pg.113]

In the previous section, the optimisation of liquid-liquid extraction with the help of mixture designs justified by the solubility theory was examined. A relation was derived between the partition coefficient and the mixture composition for liquid-liquid extraction with extraction liquids composed of three components, and a special cubic mixture model was obtained (equation (3)). [Pg.270]

When wet processing procedures are employed the final product usually has to be isolated in dry powder form before use. This is normally achieved by a combination of filtration and drying processes. In some instances a washing stage also has to be incorporated to remove soluble material, either initially present in the raw material or introduced by the production process (as in many precipitations). All of these procedures can have a significant impact on the process costs and need to be carefully optimised. [Pg.78]

Physico-chemical properties and evaluation of potential safety liabilities are important aspects of the library design process. Predicted properties like hERG liability (45), compound aqueous solubility, etc. (46-48) have been extensively studied and included in various library design strategies (49, 50) as a part of multiple constraints optimisation. We have therefore further extended the ProSAR concept to take the library property profile into account in the design process. Several in-house calculated properties are considered these include a compound novelty check (that checks in in-house and external compound databases to see if the compound is novel), predicted aqueous solubility... [Pg.140]

When a compound moves from discovery into development it is critical that the drug candidate s molecular properties are optimised in terms of bioavailability (solubility), stability, processability, hygroscopicity, etc. The compound... [Pg.217]


See other pages where Solubility optimisation is mentioned: [Pg.26]    [Pg.53]    [Pg.130]    [Pg.133]    [Pg.21]    [Pg.30]    [Pg.31]    [Pg.71]    [Pg.89]    [Pg.92]    [Pg.97]    [Pg.135]    [Pg.173]    [Pg.191]    [Pg.244]    [Pg.246]    [Pg.413]    [Pg.74]    [Pg.75]    [Pg.596]    [Pg.176]    [Pg.226]    [Pg.227]    [Pg.233]    [Pg.35]    [Pg.27]    [Pg.93]    [Pg.12]    [Pg.341]    [Pg.144]    [Pg.199]    [Pg.341]    [Pg.32]    [Pg.4]    [Pg.52]   


SEARCH



Choice of drug salt to optimise solubility

Optimisation

Optimisation Optimise

Optimisation Optimised

© 2024 chempedia.info