Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solid-phase microextraction sampling

Smith PA, Kluchinsky TA, Savage PB et al. (2002). Traditional sampling with laboratory analysis and solid phase microextraction sampling with field gas chromatograph/mass spectrometry by military industrial hygienists. Am Ind Hyg Assoc J, 63, 284-292. [Pg.611]

Programmed-temperature vaporizer electronic pressure-controlled sample inlet systems -ms grade columns, solid-phase microextraction sampling techniques, large-volume injectors, integrated guard columns, multidimensional GC, sol-gel columns, improvements in silphenylene phases, advances in GC-MS, more affordable benchtop GC-MS systems... [Pg.97]

Optimization of Solid-Phase Microextraction Sampling Analysis of Inhalation Anesthetics in Urine... [Pg.235]

ER, adopting Tri-Bed TA microconcentration, provides more excellent determination against ten CWAs (Figure 60.5). Torion (American Fork, Utah) produces a field-portable GC-toroidal ion-trap MS with a solid-phase microextraction sampling inlet for CWA and related compound determination in water samples (Smith et al., 2005, 2011b Contreras et al., 2008 Torion Technologies Inc., 2014). [Pg.907]

General Static Headspace Solid-Phase Microextraction Sampling... [Pg.234]

Figure 3 Typical total ion chromatograms of the headspace volatiles of roasted Ethiopia coffee beans obtained by using static (A) and d5mamic (B) solid-phase microextraction sampling. Figure 3 Typical total ion chromatograms of the headspace volatiles of roasted Ethiopia coffee beans obtained by using static (A) and d5mamic (B) solid-phase microextraction sampling.
Table 4 Potent Odorants (Above 50% Odor Spectrum Value) Found in the Headspace Volatiles of Roasted Coffee Beans Using the Dynamic Solid-Phase Microextraction Sampling Method... Table 4 Potent Odorants (Above 50% Odor Spectrum Value) Found in the Headspace Volatiles of Roasted Coffee Beans Using the Dynamic Solid-Phase Microextraction Sampling Method...
Table 4 Effect of Solid-Phase Microextraction Sampling Time on the Changes of Measured Gas Phase Concentrations Using a lO-gm Polydimethyl Siloxane Fiber... Table 4 Effect of Solid-Phase Microextraction Sampling Time on the Changes of Measured Gas Phase Concentrations Using a lO-gm Polydimethyl Siloxane Fiber...
Solid-phase microextractions also have been developed. In one approach, a fused silica fiber is placed inside a syringe needle. The fiber, which is coated with a thin organic film, such as poly(dimethyl siloxane), is lowered into the sample by depressing a plunger and exposed to the sample for a predetermined time. The fiber is then withdrawn into the needle and transferred to a gas chromatograph for analysis. [Pg.213]

Caffeine is extracted from beverages by a solid-phase microextraction using an uncoated fused silica fiber. The fiber is suspended in the sample for 5 min and the sample stirred to assist the mass transfer of analyte to the fiber. Immediately after removing the fiber from the sample it is transferred to the gas chromatograph s injection port where the analyte is thermally desorbed. Quantitation is accomplished by using a C3 caffeine solution as an internal standard. [Pg.226]

Solid-phase microextraction (SPME) was used for headspace sampling. The FFA were extracted from the headspace with PA, Car/PDMS, and CW/DVB fibers. It was examined whether addition of salt (NaCl) and decreasing the pH by addition of sulphuric acid (H SO ) increased the sensitivity. FFA were analyzed using gas chromatography coupled to mass spectrometry in selected ion monitoring. [Pg.172]

Although solid-phase microextraction (SPME) has only been introduced comparatively recently (134), it has already generated much interest and popularity. SPME is based on the equilibrium between an aqueous sample and a stationary phase coated on a fibre that is mounted in a syringe-like protective holder. Eor extraction, the fibre... [Pg.280]

A recent method, still in development, for determining total 4-nitrophenol in the urine of persons exposed to methyl parathion is based on solid phase microextraction (SPME) and GC/MS previously, the method has been used in the analysis of food and environmental samples (Guidotti et al. 1999). The method uses a solid phase microextraction fiber, is inserted into the urine sample that has been hydrolyzed with HCl at 50° C prior to mixing with distilled water and NaCl and then stirred (1,000 rpm). The fiber is left in the liquid for 30 minutes until a partitioning equilibrium is achieved, and then placed into the GC injector port to desorb. The method shows promise for use in determining exposures at low doses, as it is very sensitive. There is a need for additional development of this method, as the measurement of acetylcholinesterase, the enzyme inhibited by exposure to organophosphates such as methyl parathion, is not an effective indicator of low-dose exposures. [Pg.177]

Pretreatment of hair samples also includes an extraction, usually with an alkaline sodium hydroxide solution, followed by cleaning up with LLE with n-hexane/ethyl acetate. Instead of LLE, the employment of SPE is also possible. Furthermore, the solid phase microextraction (SPME) in combination with head-space analysis is usable [104-106]. In the case of using hair samples, possible external contamination (e.g., by passive smoking of Cannabis) has to be considered as false positive result. False positive results can be avoided by washing of the hair samples previous to extraction [107]. Storage of collected samples is another important fact that can cause false results in their content of A9-THC and metabolites [108-110]. [Pg.30]

Several extraction methods for water samples are applicable, such as solvent extraction, SPE using a cartridge and disk and solid-phase microextraction (SPME). [Pg.339]

The most widely employed techniques for the extraction of water samples for triazine compounds include liquid-liquid extraction (LLE), solid-phase extraction (SPE), and liquid-solid extraction (LSE). Although most reports involving SPE are off-line procedures, there is increasing interest and subsequently increasing numbers of reports regarding on-line SPE, the goal of which is to improve overall productivity and safety. To a lesser extent, solid-phase microextraction (SPME), supercritical fluid extraction (SEE), semi-permeable membrane device (SPMD), and molecularly imprinted polymer (MIP) techniques have been reported. [Pg.416]

Solid-phase microextraction (SPME) consists of dipping a fiber into an aqueous sample to adsorb the analytes followed by thermal desorption into the carrier stream for GC, or, if the analytes are thermally labile, they can be desorbed into the mobile phase for LC. Examples of commercially available fibers include 100-qm PDMS, 65-qm Carbowax-divinylbenzene (CW-DVB), 75-qm Carboxen-polydimethylsiloxane (CX-PDMS), and 85-qm polyacrylate, the last being more suitable for the determination of triazines. The LCDs can be as low as 0.1 qgL Since the quantity of analyte adsorbed on the fiber is based on equilibrium rather than extraction, procedural recovery cannot be assessed on the basis of percentage extraction. The robustness and sensitivity of the technique were demonstrated in an inter-laboratory validation study for several parent triazines and DEA and DIA. A 65-qm CW-DVB fiber was employed for analyte adsorption followed by desorption into the injection port (split/splitless) of a gas chromatograph. The sample was adjusted to neutral pH, and sodium chloride was added to obtain a concentration of 0.3 g During continuous... [Pg.427]

The need to understand the fate of pesticides in the environment has necessitated the development of analytical methods for the determination of residues in environmental media. Adoption of methods utilizing instrumentation such as gas chro-matography/mass spectrometry (GC/MS), liquid chromatography/mass spectrometry (LC/MS), liquid chromatography/tandem mass spectrometry (LC/MS/MS), or enzyme-linked immunosorbent assay (ELISA) has allowed the detection of minute amounts of pesticides and their degradation products in environmental samples. Sample preparation techniques such as solid-phase extraction (SPE), accelerated solvent extraction (ASE), or solid-phase microextraction (SPME) have also been important in the development of more reliable and sensitive analytical methods. [Pg.605]

During the last few years, miniaturization has become a dominant trend in the analysis of low-level contaminants in food and environmental samples. This has resulted in a significant reduction in the volume of hazardous and expensive solvents. Typical examples of miniaturization in sample preparation techniques are micro liquid/liquid extractions (in-vial) and solvent-free techniques such as solid-phase microextraction (SPME). Combined with state-of-the-art analytical instrumentation, this trend has resulted in faster analyses, higher sample throughputs and lower solvent consumption, whilst maintaining or even increasing assay sensitivity. [Pg.728]

Principles and Characteristics Solid-phase microextraction (SPME) is a patented microscale adsorp-tion/desorption technique developed by Pawliszyn et al. [525-531], which represents a recent development in sample preparation and sample concentration. In SPME analytes partition from a sample into a polymeric stationary phase that is thin-coated on a fused-silica rod (typically 1 cm x 100 p,m). Several configurations of SPME have been proposed including fibre, tubing, stirrer/fan, etc. SPME was introduced as a solvent-free sample preparation technique for GC. [Pg.129]

Solid-phase microextraction eliminates many of the drawbacks of other sample preparation techniques, such as headspace, purge and trap, LLE, SPE, or simultaneous distillation/extraction techniques, including excessive preparation time or extravagant use of high-purity organic solvents. SPME ranks amongst other solvent-free sample preparation methods, notably SBSE (Section 3.5.3) and PT (Section 4.2.2) which essentially operate at room temperature, and DHS (Section 4.2.2),... [Pg.132]

Applications The potential of a variety of direct solid sampling methods for in-polymer additive analysis by GC has been reviewed and critically evaluated, in particular, static and dynamic headspace, solid-phase microextraction and thermal desorption [33]. It has been reported that many more products were identified after SPME-GC-MS than after DHS-GC-MS [35], Off-line use of an amino SPE cartridge for sample cleanup and enrichment, followed by TLC, has allowed detection of 11 synthetic colours in beverage products at sub-ppm level [36], SFE-TLC was also used for the analysis of a vitamin oil mixture [16]. [Pg.433]

Principles and Characteristics As mentioned already (Section 3.5.2) solid-phase microextraction involves the use of a micro-fibre which is exposed to the analyte(s) for a prespecified time. GC-MS is an ideal detector after SPME extraction/injection for both qualitative and quantitative analysis. For SPME-GC analysis, the fibre is forced into the chromatography capillary injector, where the entire extraction is desorbed. A high linear flow-rate of the carrier gas along the fibre is essential to ensure complete desorption of the analytes. Because no solvent is injected, and the analytes are rapidly desorbed on to the column, minimum detection limits are improved and resolution is maintained. Online coupling of conventional fibre-based SPME coupled with GC is now becoming routine. Automated SPME takes the sample directly from bottle to gas chromatograph. Split/splitless, on-column and PTV injection are compatible with SPME. SPME can also be used very effectively for sample introduction to fast GC systems, provided that a dedicated injector is used for this purpose [69,70],... [Pg.437]

Miniaturisation of scientific instruments, following on from size reduction of electronic devices, has recently been hyped up in analytical chemistry (Tables 10.19 and 10.20). Typical examples of miniaturisation in sample preparation techniques are micro liquid-liquid extraction (in-vial extraction), ambient static headspace and disc cartridge SPE, solid-phase microextraction (SPME) and stir bar sorptive extraction (SBSE). A main driving force for miniaturisation is the possibility to use MS detection. Also, standard laboratory instrumentation such as GC, HPLC [88] and MS is being miniaturised. Miniaturisation of the LC system is compulsory, because the pressure to decrease solvent usage continues. Quite obviously, compact detectors, such as ECD, LIF, UV (and preferably also MS), are welcome. [Pg.726]

S. Hamm, J. Bleton, A. Tchapla, Headspace solid phase microextraction for screening for the presence of resins in Egyptian archaeological samples, Journal of Separation Science, 27,235 243 (2004). [Pg.32]


See other pages where Solid-phase microextraction sampling is mentioned: [Pg.86]    [Pg.86]    [Pg.402]    [Pg.128]    [Pg.112]    [Pg.86]    [Pg.86]    [Pg.402]    [Pg.128]    [Pg.112]    [Pg.102]    [Pg.115]    [Pg.124]    [Pg.129]    [Pg.182]    [Pg.182]    [Pg.431]    [Pg.431]    [Pg.432]    [Pg.438]    [Pg.449]    [Pg.261]   
See also in sourсe #XX -- [ Pg.201 ]




SEARCH



Microextraction

Microextractions

Microextractions solid-phase

Phase Samples

Sample solid samples

Sampling phase

Sampling solids

© 2024 chempedia.info