Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

SOHIO

In 1957 Standard Oil of Ohio (Sohio) discovered bismuth molybdate catalysts capable of producing high yields of acrolein at high propylene conversions (>90%) and at low pressures (12). Over the next 30 years much industrial and academic research and development was devoted to improving these catalysts, which are used in the production processes for acrolein, acryUc acid, and acrylonitrile. AH commercial acrolein manufacturing processes known today are based on propylene oxidation and use bismuth molybdate based catalysts. [Pg.123]

Patents claiming specific catalysts and processes for thek use in each of the two reactions have been assigned to Japan Catalytic (45,47—49), Sohio (50), Toyo Soda (51), Rohm and Haas (52), Sumitomo (53), BASF (54), Mitsubishi Petrochemical (56,57), Celanese (55), and others. The catalysts used for these reactions remain based on bismuth molybdate for the first stage and molybdenum vanadium oxides for the second stage, but improvements in minor component composition and catalyst preparation have resulted in yields that can reach the 85—90% range and lifetimes of several years under optimum conditions. Since plants operate under more productive conditions than those optimum for yield and life, the economically most attractive yields and productive lifetimes maybe somewhat lower. [Pg.152]

Acrylonitrile is produced in commercial quantities almost exclusively by the vapor-phase catalytic propylene ammoxidation process developed by Sohio... [Pg.182]

Although acrylonitrile manufacture from propylene and ammonia was first patented in 1949 (30), it was not until 1959, when Sohio developed a catalyst capable of producing acrylonitrile with high selectivity, that commercial manufacture from propylene became economically viable (1). Production improvements over the past 30 years have stemmed largely from development of several generations of increasingly more efficient catalysts. These catalysts are multicomponent mixed metal oxides mostly based on bismuth—molybdenum oxide. Other types of catalysts that have been used commercially are based on iron—antimony oxide, uranium—antimony oxide, and tellurium-molybdenum oxide. [Pg.182]

The propylene-based process developed by Sohio was able to displace all other commercial production technologies because of its substantial advantage in overall production costs, primarily due to lower raw material costs. Raw material costs less by-product credits account for about 60% of the total acrylonitrile production cost for a world-scale plant. The process has remained economically advantaged over other process technologies since the first commercial plant in 1960 because of the higher acrylonitrile yields resulting from the introduction of improved commercial catalysts. Reported per-pass conversions of propylene to acrylonitrile have increased from about 65% to over 80% (28,68—70). [Pg.184]

Addition of Hydrogen Cyanide. At one time the predominant commercial route to acrylonitrile was the addition of hydrogen cyanide to acetylene. The reaction can be conducted in the Hquid (CuCl catalyst) or gas phase (basic catalyst at 400 to 600°C). This route has been completely replaced by the ammoxidation of propylene (SOHIO process) (see Acrylonitrile). [Pg.374]

Oxidation Catalysis. The multiple oxidation states available in molybdenum oxide species make these exceUent catalysts in oxidation reactions. The oxidation of methanol (qv) to formaldehyde (qv) is generally carried out commercially on mixed ferric molybdate—molybdenum trioxide catalysts. The oxidation of propylene (qv) to acrolein (77) and the ammoxidation of propylene to acrylonitrile (qv) (78) are each carried out over bismuth—molybdenum oxide catalyst systems. The latter (Sohio) process produces in excess of 3.6 x 10 t/yr of acrylonitrile, which finds use in the production of fibers (qv), elastomers (qv), and water-soluble polymers. [Pg.477]

Emerson Gumming, Inc. eventuaUy bought the rights to the Sohio process and produced a variety of microspheres. Union Carbide was Hcensed to produce the phenoHc microspheres offered under the name PhenoHc MicrobaUoons (Table 16). When PhenoHc MicrobaUoons are introduced into a cmde-oU storage tank, they form a fluid seal that rises and faUs with the level of the oU. A continuous vapor-barrier seal is formed, which reduces evaporational losses up to 90%. Tests have been conducted under various mechanical and weather conditions and with cmde oUs of varying vapor pressure. [Pg.308]

Barex Sohio 90% copolymer of 74% acrylonitrile and 26% methyl acrylate + 10% butadiene mbber graft... [Pg.491]

The handling of toxic materials and disposal of ammonium bisulfate have led to the development of alternative methods to produce this acid and the methyl ester. There are two technologies for production from isobutylene now available ammoxidation to methyl methacrylate (the Sohio process), which is then solvolyzed, similar to acetone cyanohydrin, to methyl methacrylate and direct oxidation of isobutylene in two stages via methacrolein [78-85-3] to methacryhc acid, which is then esterified (125). Since direct oxidation avoids the need for HCN and NH, and thus toxic wastes, all new plants have elected to use this technology. Two plants, Oxirane and Rohm and Haas (126), came on-stream in the early 1980s. The Oxirane plant uses the coproduct tert-huty alcohol direcdy rather than dehydrating it first to isobutylene (see Methacrylic acid). [Pg.373]

Two synthesis processes account for most of the hydrogen cyanide produced. The dominant commercial process for direct production of hydrogen cyanide is based on classic technology (23—32) involving the reaction of ammonia, methane (natural gas), and air over a platinum catalyst it is called the Andmssow process. The second process involves the reaction of ammonia and methane and is called the BlausAure-Methan-Ammoniak (BMA) process (30,33—35) it was developed by Degussa in Germany. Hydrogen cyanide is also obtained as a by-product in the manufacture of acrylonitrile (qv) by the ammoxidation of propjiene (Sohio process). [Pg.377]

Acrylonitrile. Acrylonitrile is produced by reacting propylene, ammonia, and owgeu (air) in a single flmdized bed of a complex catalyst. Known as the SOHIO process, this process was first operated commercially in 1960. In addition to acrylonitrile, significant quantities of HCN and acetonitrile are also produced. This process is also exothermic. Temperature control is achieved by raising steam inside vertical tubes immersed in the bed [Veatch, Hydrocarbon Proce.ss. Pet. Refiner, 41, 18 (November 1962)]. [Pg.1573]

These enable temperature control with built-in exchangers between the beds or with pumparound exchangers. Converters for ammonia, 80.3, cumene, and other processes may employ as many as five or six beds in series. The Sohio process for vapor-phase oxidation of propylene to acrylic acid uses hvo beds of bismuth molybdate at 20 to 30 atm (294 to 441 psi) and 290 to 400°C (554 to 752°F). Oxidation of ethylene to ethylene oxide also is done in two stages with supported... [Pg.2102]

The best and most effective time to provide for reliability is in the initial design. The importance of initial design is illustrated by a study" undertaken by Sohio at their Toledo refinery. Their first listed major finding from the study was as follows ... [Pg.247]

In the mid-1970s many major plastics materials producers marketed or were actively developing materials of this type. They included American Cyanamid, Borg-Warner, Dow, Du Pont, ICI, Marbon, Monsanto, Solvay, Union Carbide and Vistron (Sohio). [Pg.416]

Transition metal oxides or their combinations with metal oxides from the lower row 5 a elements were found to be effective catalysts for the oxidation of propene to acrolein. Examples of commercially used catalysts are supported CuO (used in the Shell process) and Bi203/Mo03 (used in the Sohio process). In both processes, the reaction is carried out at temperature and pressure ranges of 300-360°C and 1-2 atmospheres. In the Sohio process, a mixture of propylene, air, and steam is introduced to the reactor. The hot effluent is quenched to cool the product mixture and to remove the gases. Acrylic acid, a by-product from the oxidation reaction, is separated in a stripping tower where the acrolein-acetaldehyde mixture enters as an overhead stream. Acrolein is then separated from acetaldehyde in a solvent extraction tower. Finally, acrolein is distilled and the solvent recycled. [Pg.215]

Ammoxidation illustrates several principles. First, it shows the benefit of telescoping two successive processes into one reactor. The Sohio inventor, James D. Idol, Jr., observed that catalysts for two successive stages in an earlier ammoxidation procedure were very similar. He then found that the same catalyst could be used for both, thus eliminating a complete plant stage, at great saving of capital and operating cost ... [Pg.238]

Made by the reaction of propylene with ammonia and air (the Sohio process). This is the basis for the production of all of the acrylonitrile made in the world. Recoverable and salable by-products include hydrogen cyanide (HCN) and acetonitrile (CH3CN). [Pg.128]

Mountain states), Chevron (Standard of California), Exxon (from Standard of New Jersey), Sohio (Standard of Ohio), Marathon (covering western Ohio and other parts of Ohio not covered by Sohio), and Mobil (Standard of New York). These companies, derived from the Standard Oil Co., formed an original oil industry map in US, but that map no longer exist, rather the merging and acquisition processes reduced all them into four of the seven majors (ExxonMobil, ChevronTexaco, ConocoPhillips, and BP America). [Pg.358]

Invented and developed independently in the late 1950s by D.G. Stewart in the Distillers Company, and R. Grasselli in Standard Oil of Ohio. The former used a tin/antimony oxide catalyst the latter bismuth phosphomolybdate on silica. Today, a proprietary catalyst containing depleted uranium is used. See also Erdolchemie, OSW, Sohio. [Pg.21]

SOHIO [Standard Ohio] The Standard Oil Company of Ohio (later BP Chemicals America) has developed many processes, but its ammoxidation process, for converting propylene to acrylonitrile, is the one mostly associated with its name. First operated in the United States in 1960, it is the predominant process for making acrylonitrile used in the world today. Jacobs, M., Ind. Eng. Chem., 1996, 74(41), 40. [Pg.249]

Production of acrylonitrile by ammoxidation of propylene (SOHIO process) ... [Pg.572]

Using the Kunii-Levenspiel bubbling-bed model of Section 23.4.1 for the fluidized-bed reactor in the SOHIO process for the production of acrylonitrile (C3H3N) by the ammoxidation... [Pg.597]

Limberg C (2007) The SOHIO Process as an Inspiration for Molecular Organometallic Chemistry. 22 79-95... [Pg.198]

In the 1960s, like almost all acetylene technology, the HCN/C2H2 route to acrylonitrile gave way to ammoxidation of, propylene. Thar word, ammoxidation, looks suspiciously like the contraction of two more familiar terms, ammonia and oxidation, and it is. When Standard of Ohio (Sohio) was still a company they developed a one-step vapor phase catalytic reaction of propylene with ammonia and air to give acrylonitrile. [Pg.275]

The Sohio technology is based on a catalyst of bismuth an4 molybdenum oxides. Subsequent catalyst improvements came from the use of bismuth phosphomolybdate on a silica gel, and more recently, antimony-uranium oxides. Each change in catalyst was motivated Jby a higher conversion rate per pass to acrylonitrile. [Pg.276]

Electrochemical capacitors have been studied for many years. The first patents date back to 1957, where a capacitor based on high surface area carbon was described by Becker. Later in 1969 first attempts to market such devices were undertaken by Standard Oil Company of Ohio (SOHIO). However, only in the 1990s did electrochemical capacitors become famous in the context of hybrid electric vehicles. The electrochemical capacitor (EC) was supposed to boost the battery or the fuel cell in the hybrid electric vehicle to provide the necessaiy power for acceleration, and additionally allow for recuperation of brake energy (Viswanathan, 2006). [Pg.236]

Bakshani, N. Maurer, E. E. Alien, M. P. Degenhart, A. L. Crud at the Sohio uranium solvent extraction circuit. Paper at AIME Annual Meeting, New Orleans, February 1979. [Pg.339]

Li-Al anodes have been combined in cells with CI2 in the Sohio Carb-Tek battery, operating with a molten salt electrolyte in the range of 400°-500°C. A porous carbon cathode and a BN separator were used. Addition of TeCla to the positive electrode increased the capacity in the 3.25-2.5V range. Although the battery presented many problems associated with the materials of the electrode, the casing and the seal, corrosion by CI2 being... [Pg.269]


See other pages where SOHIO is mentioned: [Pg.123]    [Pg.180]    [Pg.453]    [Pg.353]    [Pg.308]    [Pg.309]    [Pg.527]    [Pg.43]    [Pg.379]    [Pg.579]    [Pg.238]    [Pg.239]    [Pg.68]    [Pg.26]    [Pg.301]    [Pg.267]    [Pg.116]    [Pg.85]    [Pg.7]   
See also in sourсe #XX -- [ Pg.79 ]

See also in sourсe #XX -- [ Pg.349 , Pg.357 ]




SEARCH



Acrolein/acrylonitrile Sohio process

Acrylonitrile SOHIO process

Ammoxidation process, Sohio

Bismuth molybdate SOHIO process

Hydrogen cyanide Sohio acrylonitrile

Industrial processes SOHIO process

SOHIO ammoxidation

SOHIO catalyst

SOHIO study

Sohio process

Sohio processes acrylic acid

© 2024 chempedia.info