Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sodium polyester

Standard polyester fibers contain no reactive dye sites. PET fibers are typically dyed by diffusiag dispersed dyestuffs iato the amorphous regions ia the fibers. Copolyesters from a variety of copolymeri2able glycol or diacid comonomers open the fiber stmcture to achieve deep dyeabiHty (7,28—30). This approach is useful when the attendant effects on the copolyester thermal or physical properties are not of concern (31,32). The addition of anionic sites to polyester usiag sodium dimethyl 5-sulfoisophthalate [3965-55-7] has been practiced to make fibers receptive to cationic dyes (33). Yams and fabrics made from mixtures of disperse and cationicaHy dyeable PET show a visual range from subde heather tones to striking contrasts (see Dyes, application and evaluation). [Pg.325]

The most common chemical bleaching procedures are hypochlorite bleach for cotton hydrogen peroxide bleach for wool and cotton sodium chlorite bleach for cotton, polyamide, polyester, and polyacrylonitrile and reductive bleaching with dithionite for wool and polyamide. [Pg.119]

Other Rea.ctions, The photolysis of ketenes results in carbenes. The polymeriza tion of ketenes has been reviewed (49). It can lead to polyesters and polyketones (50). The polymerization of higher ketenes results in polyacetals depending on catalysts and conditions. Catalysts such as sodium alkoxides (polyesters), aluminum tribromide (polyketones), and tertiary amines (polyacetals) are used. Polymers from R2C—C—O may be represented as foUows. [Pg.475]

Naphthalenediol. This diol is prepared by the alkah fusion of 2-hydroxynaphthalene-6-sulfonic acid (Schaffer acid) at 290—295°C. Schaffer acid is usually produced by sulfonation of 2-naphthol with the addition of sodium sulfate at 85—105°C. This acid is also used as a coupling component in the production of a2o dyes such as Acid Black 26. 2,6-Naphthalenediol is used as a component in the manufacture of aromatic polyesters which, as is also tme of the corresponding amides, display Hquid crystal characteristics (52). [Pg.500]

Some polymers from styrene derivatives seem to meet specific market demands and to have the potential to become commercially significant materials. For example, monomeric chlorostyrene is useful in glass-reinforced polyester recipes because it polymerizes several times as fast as styrene (61). Poly(sodium styrenesulfonate) [9003-59-2] a versatile water-soluble polymer, is used in water-poUution control and as a general flocculant (see Water, INDUSTRIAL WATER TREATMENT FLOCCULATING AGENTs) (63,64). Poly(vinylhenzyl ammonium chloride) [70304-37-9] h.a.s been useful as an electroconductive resin (see Electrically conductive polya rs) (65). [Pg.507]

Blends of polyester with cotton (qv) or viscose are first dyed with disperse dyes, then with sulfur dyes (see Fibers, polyester Fibers, regenerated CELLULOSics). Disperse and sulfur dyes can also be appHed simultaneously in a pad—dry—thermofix/chemical reduction pad—steam sequence. In this case, the sulfur dyes cannot be used in thein reduced form because of the effect of the sodium sulfide on the disperse dye. Therefore, this method is confined to the solubilized sulfur dyes or sulfur dyes in the dispersed form. [Pg.170]

A number of after-treatments with polyester copolymers carried out after sodium hydroxide processing are reported to produce a more hydrophilic polyester fabric (197). Likewise, the addition of a modified cellulose ether has improved water absorbency (198). Other treatments used on cotton and blends are also effective on 100% polyester fabrics (166—169). In this case, polymeri2ation is used between an agent such as DMDHEU and a polyol to produce a hydrophilic network in the synthetic matrix (166—169). [Pg.449]

The majority of vat dyes used worldwide are appHed by continuous dyeing polyester—cotton blends are the most important substrate. The fabric is padded with vat dye dispersion, dried, padded with sodium hydrosulfite, caustic soda, and salt, steamed for 30—60 s at 102°C, rinsed, and dried. [Pg.358]

Preparation for Dyeing. A hot alkaline scour with a synthetic surfactant and with 1% soda ash or caustic soda is used to remove size, lubricants, and oils. Sodium hypochlorite is sometimes included in the alkaline scouring bath when bleaching is requked. After bleaching, the polyester fabric is given a bisulfite rinse and, when requked, a further scouring in a formulated oxahc acid bath to remove mst stains and mill dkt which is resistant to alkaline scouring. [Pg.363]

Afterscouring of polyester generally includes a reduction clearing with sodium hydrosulfite and alkaH at 60—80°C to remove any dye remaining on... [Pg.371]

A number of cement materials are used with brick. Standard are phenolic and furan resins, polyesters, sulfur, silicate, and epoxy-based materials. Carbon-filled polyesters and furanes are good against nonoxidizing acids, salts, and solvents. Silica-filled resins should not be used against hydrofluoric or fluosihcic acids. Sulfur-based cements are limited to 93°C (200°F), while resins can be used to about 180°C (350°F). The sodium silicate-based cements are good against acids to 400°C (750°F). [Pg.2453]

It is essential to neutralize any strong acid present before distilling lactic esters otherwise, condensation by ester interchange occurs, with liberation of alcohol and production of polylactic acid, a linear polyester. Other neutralizing agents, such as alkali or alkaline-earth hydroxides or carbonates, doubtless could be used satisfactorily instead of sodium acetate. [Pg.5]

This monomer is prepared by reacting cyanuric chloride with excess allyl alcohol in the presence of sodium hydroxide at 15-20°C. Laminates based on polyester resins containing triallyl cyanurate are claimed to be able to withstand a temperaure of 250°C for short periods. [Pg.699]

Phenolic resins were the first totally synthetic plastics invented. They were commercialized by 1910 [I]. Their history begins before the development of the structural theory of chemistry and even before Kekule had his famous dreams of snakes biting their tails. It commences with Gerhardt s 1853 observations of insoluble resin formation while dehydrating sodium salicylate [2]. These were followed by similar reports on the behavior of salicylic acid derivatives under a variety of reaction conditions by Schroder et al. (1869), Baeyer (1872), Velden (1877), Doebner (1896 and 1898), Speyer (1897) and Baekeland (1909-1912) [3-17]. Many of these early reports appear to involve the formation of phenolic polyesters rather than the phenol-aldehyde resins that we think of today. For... [Pg.869]

Polycarbonates (PC) are another group of condensation thermoplastics used mainly for special engineering purposes. These polymers are considered polyesters of carbonic acid. They are produced by the condensation of the sodium salt of bisphenol A with phosgene in the presence of an organic solvent. Sodium chloride is precipitated, and the solvent is removed by distillation ... [Pg.337]

To a stainless steel reactor equipped with a heating mantle, a charging port, a condenser for removing ethylene glycol, an inert gas inlet, and a sampling valve were added 400 g of bis(2-hydroxyethyl)terephthalate, 136 g of ethylene glycol, and 0.035 g (or 0.225 g) of sodium acetate trihydrate. The temperature was raised to between 190 and 200°C in 1 h and then 454 g of waste polyester... [Pg.556]

A mixture of monolauryl phosphate sodium salt and triethylamine in H20 was treated with glycidol at 80°C for 8 h to give 98% lauryl 2,3-dihydro-xypropyl phosphate sodium salt [304]. Dyeing aids for polyester fibers exist of triethanolamine salts of ethoxylated phenol-styrene adduct phosphate esters [294], Fatty ethanolamide phosphate surfactant are obtained from the reaction of fatty alcohols and fatty ethanolamides with phosphorus pentoxide and neutralization of the product [295]. A double bond in the alkyl group of phosphoric acid esters alter the properties of the molecule. Diethylethanolamine salt of oleyl phosphate is effectively used as a dispersant for antimony oxide in a mixture of xylene-type solvent and water. The composition is useful as an additive for preventing functional deterioration of fluid catalytic cracking catalysts for heavy petroleum fractions. When it was allowed to stand at room temperature for 1 month it shows almost no precipitation [241]. [Pg.615]

How can you make a polyester and a polyamide Objectives Prepare a polyester from phthalic anhydride and ethylene glycol. Prepare a polyamide from adipoyl chloride and hexamethylenediamine. phthalic anhydride (2.0 g) sodium acetate (0.1 g) ethylene glycol (1 mL) 5% adipoyl chloride in cyclohexane (25 mL) 50% aqueous ethanol (10 mL) 5% aqueous solution of hexamethylenediamine (25 mL) 20% sodium hydroxide (NaOH) (1 mL) scissors copper wire test tube test-tube rack 10-mL graduated cylinder 50-mL graduated cylinder 150-mL beakers (2) ring stand clamp Bunsen burner striker or matches balance weighing papers (2)... [Pg.182]

An analytical solution for molecules with alkaline functionality is acid/base titration. In this technique, the polymer is dissolved, but not precipitated prior to analysis. In this way, the additive, even if polymer-bound, is still in solution and titratable. This principle has also been applied for the determination of 0.01 % stearic acid and sodium stearate in SBR solutions. The polymer was diluted with toluene/absolute ethanol mixed solvent and stearic acid was determined by titration with 0.1 M ethanolic NaOH solution to the m-cresol purple endpoint similarly, sodium stearate was titrated with 0.05 M ethanolic HC1 solution [83]. Also long-chain acid lubricants (e.g. stearic acid) in acrylic polyesters were quantitatively determined by titration of the extract. [Pg.155]


See other pages where Sodium polyester is mentioned: [Pg.241]    [Pg.326]    [Pg.463]    [Pg.167]    [Pg.230]    [Pg.70]    [Pg.504]    [Pg.505]    [Pg.330]    [Pg.140]    [Pg.350]    [Pg.100]    [Pg.150]    [Pg.449]    [Pg.350]    [Pg.150]    [Pg.151]    [Pg.378]    [Pg.467]    [Pg.530]    [Pg.267]    [Pg.364]    [Pg.364]    [Pg.365]    [Pg.55]    [Pg.753]    [Pg.349]    [Pg.3]    [Pg.545]    [Pg.547]    [Pg.616]    [Pg.199]   
See also in sourсe #XX -- [ Pg.184 ]




SEARCH



Sodium hydroxide polyester resins

© 2024 chempedia.info