Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sodium nitrate products

The armual world production of sodium nitrate was steady throughout the early 1990s. About 85% is suppHed by the natural product. The maximum world production of sodium nitrate occurred around 1930, at 3,000,000 t/yr, but the highest production levels attained by the Chilean nitrate industry (ca 2,900,000 t/yr) occurred in the late 1920s. Synthetic sodium nitrate production peaked in the mid-1930s at 730,000 t/yr. During that period, the Chilean industry production decreased to 1,360,000 t/yr. [Pg.192]

SQM Nitratos (Chile) operates two sodium nitrate plants in northern Chile Pedro de Valdivia and Mama Elena, about 30 km distant from one another. The caUche is mined in open-pit areas. A solar evaporation plant, Coya Sur, Hes in between. A flow sheet of the processing operations for sodium nitrate production is shown in Figure 2. [Pg.193]

Sodium Nitrate production for fertilizers, explosives and as a heat transfer medium. [Pg.249]

Figure 8.20. GlAP Sodium Nitrate Production-Technotogyr... Figure 8.20. GlAP Sodium Nitrate Production-Technotogyr...
Expts. 16, //. Pure nitric acid was used. In expt. 16 the reaction was of the first order in the concentration of the aromatic, and of half-life 1-1-5 minutes (similar to that of toluene under the same conditions). In expt. 17 the sodium nitrate slowed the reaction (half-life c. 60 min). About 2 % of an acetoxylated product was formed (table 5-4). [Pg.100]

Black Powder. Black powder is mainly used as an igniter for nitrocellulose gun propellant, and to some extent in safety blasting fuse, delay fuses, and in firecrackers. Potassium nitrate black powder (74 wt %, 15.6 wt % carbon, 10.4 wt % sulfur) is used for military appHcations. The slower-burning, less cosdy, and more hygroscopic sodium nitrate black powder (71.0 wt %, 16.5 wt % carbon, 12.5 wt % sulfur) is used industrially. The reaction products of black powder are complex (Table 12) and change with the conditions of initia tion, confinement, and density. The reported thermochemical and performance characteristics vary greatly and depend on the source of material, its physical form, and the method of determination. Typical values are Hsted in Table 13. [Pg.50]

Potassium Nitrate. Potassium nitrate, known but Httle used as a fertilizer for many years, may be reclaimed as a by-product of the production of sodium nitrate from natural deposits of caflche in Chile. KNO also has been produced by the double decomposition reaction between sodium nitrate and potassium chloride ... [Pg.232]

Sodium Nitrate and Sodium Nitrite. Nitrates and nitrites ate used in meat-curing processes to prevent the growth of bacteria that cause botulism. Nitrates have been shown to form low, but possibly toxic, levels of nitrosamines in certain cured meats. For this reason, the safety of these products has been questioned, and use is limited (80). [Pg.443]

First Alternative. Figure 1 illustrates the first of the two alternative production processes. Here the mother Hquor from the sodium nitrate crystallization plant, normally containing about 1.5 g/L iodine as iodate, is decanted for clarification and concentration homogenization. From there the solution is spHt into two fractions. The larger fraction is fed into an absorption tower where it is contacted with SO2 obtained by sulfur combustion. In the absorption tower iodate is reduced to iodide according to the following reaction ... [Pg.361]

The highly exothermic nature of the butane-to-maleic anhydride reaction and the principal by-product reactions require substantial heat removal from the reactor. Thus the reaction is carried out in what is effectively a large multitubular heat exchanger which circulates a mixture of 53% potassium nitrate [7757-79-1/, KNO 40% sodium nitrite [7632-00-0], NaN02 and 7% sodium nitrate [7631-99-4], NaNO. Reaction tube diameters are kept at a minimum 25—30 mm in outside diameter to faciUtate heat removal. Reactor tube lengths are between 3 and 6 meters. The exothermic heat of reaction is removed from the salt mixture by the production of steam in an external salt cooler. Reactor temperatures are in the range of 390 to 430°C. Despite the rapid circulation of salt on the shell side of the reactor, catalyst temperatures can be 40 to 60°C higher than the salt temperature. The butane to maleic anhydride reaction typically reaches its maximum efficiency (maximum yield) at about 85% butane conversion. Reported molar yields are typically 50 to 60%. [Pg.455]

The second method of preparation involves precipitation from a cold acidic solution of mercurous nitrate. Mercurous chloride is isolated after washing in a manner similar to the chamber method described. This product, which generally contains small amounts of occluded sodium nitrate, is satisfactory as a technical-grade material. Difficulty may be encountered in having it pass NF or reagent-grade specifications (see Fine chemicals). [Pg.113]

Ttinitroparaffins can be prepared from 1,1-dinitroparaffins by electrolytic nitration, ie, electrolysis in aqueous caustic sodium nitrate solution (57). Secondary nitroparaffins dimerize on electrolytic oxidation (58) for example, 2-nitropropane yields 2,3-dimethyl-2,3-dinitrobutane, as well as some 2,2-dinitropropane. Addition of sodium nitrate to the anolyte favors formation of the former. The oxidation of salts of i7k-2-nitropropane with either cationic or anionic oxidants generally gives both 2,2-dinitropropane and acetone (59) with ammonium peroxysulfate, for example, these products are formed in 53 and 14% yields, respectively. Ozone oxidation of nitroso groups gives nitro compounds 2-nitroso-2-nitropropane [5275-46-7] (propylpseudonitrole), for example, yields 2,2-dinitropropane (60). [Pg.101]

Manufacture. Historically, ammonium nitrate was manufactured by a double decomposition method using sodium nitrate and either ammonium sulfate or ammonium chloride. Modem commercial processes, however, rely almost exclusively on the neutralization of nitric acid (qv), produced from ammonia through catalyzed oxidation, with ammonia. Manufacturers commonly use onsite ammonia although some ammonium nitrate is made from purchased ammonia. SoHd product used as fertilizer has been the predominant form produced. However, sale of ammonium nitrate as a component in urea—ammonium nitrate Hquid fertilizer has grown to where about half the ammonium nitrate produced is actually marketed as a solution. [Pg.366]

Gas-phase oxidation of propylene using oxygen in the presence of a molten nitrate salt such as sodium nitrate, potassium nitrate, or lithium nitrate and a co-catalyst such as sodium hydroxide results in propylene oxide selectivities greater than 50%. The principal by-products are acetaldehyde, carbon monoxide, carbon dioxide, and acrolein (206—207). This same catalyst system oxidizes propane to propylene oxide and a host of other by-products (208). [Pg.141]

Sodium nitrate is used as a fertiliser and in a number of industrial processes. In the period from 1880—1910 it accounted for 60% of the world fertiliser nitrogen production. In the 1990s sodium nitrate accounts for 0.1% of the world fertiliser nitrogen production, and is used for some specific crops and soil conditions. This decline has resulted from an enormous growth in fertiliser manufacture and an increased use of less expensive nitrogen fertilisers (qv) produced from synthetic ammonia (qv), such as urea (qv), ammonium nitrate, ammonium phosphates, ammonium sulfate, and ammonia itself (see Ammonium compounds). The commercial production of synthetic ammonia began in 1921, soon after the end of World War I. The main industrial market for sodium nitrate was at first the manufacture of nitric acid (qv) and explosives (see Explosives and propellants). As of the mid-1990s sodium nitrate was used in the production of some explosives and in a number of industrial areas. [Pg.192]

The kinetics of these reactions markedly favor sodium nitrite production. If some sodium nitrate is formed, it can be easily separated by differential crystallization. Otherwise, sodium nitrate can be formed by treating sodium nitrite with nitric acid ... [Pg.195]

As of 1996 world production of sodium nitrate was about 520,000 metric tons annually. Of this quantity, some 450,000 t (86%) are produced in Chile from natural deposits by SQM Nitratos and distributed worldwide by several affOiates, eg, Chilean Nitrate Corporation in the United States and Nitrate Sales International in Belgium. The remainder, ca 70,000 t, is manufactured mainly in Europe, Japan, and Russia, generally as a by-product of nitric acid production. Additionally, China is known to manufacture some unknown but significant volumes of sodium nitrate for domestic use. [Pg.195]

Technical Grades. Chile s SQM Nitratos is the largest producer of technical-grade NaNO, making ca 170,000 t/yr. About 70,000 t/yr are manufactured in countries such as Germany (BASF), Japan (Mitsubishi), and others. Sodium nitrate has not been manufactured in the United States since Olin Corporation stopped production in 1988. [Pg.195]

Another large appHcation is as an ingredient in the production of charcoal briquettes. The amount of sodium nitrate used in charcoal briquette manufacture depends on the type and amount of wood and coal used. Typically charcoal briquettes contain up to almost 3% sodium nitrate. Sodium nitrate is also used in the manufacture of enamels and porcelain as an oxidizing and fluxing agent. In porcelain—enamel frits used for metal coating, the amount of sodium nitrate in a batch varies with the various metal bases to be coated, typically from about 3.8 to 7.8 wt %. [Pg.197]

Sodium nitrate is also used in formulations of heat-transfer salts for he at-treatment baths for alloys and metals, mbber vulcanization, and petrochemical industries. A mixture of sodium nitrate and potassium nitrate is used to capture solar energy (qv) to transform it into electrical energy. The potential of sodium nitrate in the field of solar salts depends on the commercial development of this process. Other uses of sodium nitrate include water (qv) treatment, ice melting, adhesives (qv), cleaning compounds, pyrotechnics, curing bacons and meats (see Food additives), organics nitration, certain types of pharmaceutical production, refining of some alloys, recovery of lead, and production of uranium. [Pg.197]

Gas contact is typically carried out in absorption towers over which the alkaline solutions are recirculated. Strict control over the conditions of absorption are required to efficiendy capture the NO and convert it predominantly to sodium nitrite according to the following reaction, thereby minimizing the formation of by-product sodium nitrate. Excessive amounts of nitrate can impede the separation of pure sodium nitrite from the process. [Pg.199]

Nitric acid, or aqua fortis as it was called in medieval times, has been known and used by mankind for centuries. At first, it was produced by heating a mixture of sodium nitrate (Chile saltpeter) and sulfuric acid. The product obtained was sodium hydrogen sulfate, and the nitric acid vapors escaping during this process were condensed ... [Pg.85]

It is available commercially from several routes including as a product from the manufacture of sodium nitrate from sodium chloride and nitric acid, and from a process involving the passage of ammonia and air over heated platinum and treating the nitric oxide so formed with oxygen. [Pg.298]


See other pages where Sodium nitrate products is mentioned: [Pg.195]    [Pg.195]    [Pg.60]    [Pg.195]    [Pg.1460]    [Pg.1460]    [Pg.195]    [Pg.195]    [Pg.60]    [Pg.195]    [Pg.1460]    [Pg.1460]    [Pg.174]    [Pg.198]    [Pg.278]    [Pg.216]    [Pg.310]    [Pg.169]    [Pg.38]    [Pg.82]    [Pg.194]    [Pg.194]    [Pg.195]    [Pg.195]    [Pg.197]    [Pg.200]    [Pg.196]    [Pg.401]   
See also in sourсe #XX -- [ Pg.88 ]




SEARCH



Nitrate products

Nitration Production

Sodium nitrate

Sodium production

Sodium products

© 2024 chempedia.info