Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Slurry model

Other authors have also used approximate methods to solve the radiation problem. Li Puma and Yue (2003) used a thin film slurry model which does not include scattering effects. More recently, Li Puma et al. (2004), Brucato et al. (2006), and Li Puma and Brucato (2007) have used six flux models for different geometries. Salaices et al. (2001, 2002) used a model which allows for an adequate evaluation of the absorbed radiation in terms of macroscopic balances, based on radiometric measurements. They measured separately total transmitted radiation and nonscattered transmitted radiation, modeling the decay of both radiative fluxes with concentration by exponential fimctions. [Pg.213]

Gardner and Eikerts (14) used a large closed-loop pipe viscometer to evaluate the effect of 20-40 mesh sand on the viscosity of aluminate-cross-linked 60-lb carboxymethyl hydroxyethyleellulose/1000 gal gel. They concluded that the effect of sand on gel viscosity was a larger increase in slurry viscosity in the fracture than predicted from Newtonian slurry models. [Pg.566]

A new development may be the use of transient techniques in slurry model reactors. Weng and Smith [l33] recently presented a model for the reactant concentration in the gas outlet if a pulse of reactant was introduced in the gas feed. Mathematically they showed the possibility of distinguishing between the adsorption rate and the true surface reaction rate. A slightly different mathematical treatment is presented by Datta and Rinker [64]. We do not know of experimental work on measuring intrinsic kinetics using such transient techniques. [Pg.496]

Further work is needed to build a physical model that allows prediction of the concentration effect from the primary properties of the slurry or from a limited amount of slurry testing. [Pg.393]

The other models can be appHed to non-Newtonian materials where time-dependent effects are absent. This situation encompasses many technically important materials from polymer solutions to latices, pigment slurries, and polymer melts. At high shear rates most of these materials tend to a Newtonian viscosity limit. At low shear rates they tend either to a yield point or to a low shear Newtonian limiting viscosity. At intermediate shear rates, the power law or the Casson model is a useful approximation. [Pg.167]

The Hercules viscometer was originally designed for paper and paperboard coatings, but its use has been extended to paints, adhesives, mineral slurries, emulsions, and starch solutions. The iastmment, noted for being robust and rehable, is particularly well suited for quaUty control and product formulation. It is capable of measuting viscosity over a moderate range 1-10 mPa-s) up to high shear rates (115,000 ). A more recent model is the... [Pg.189]

Correlations of nucleation rates with crystallizer variables have been developed for a variety of systems. Although the correlations are empirical, a mechanistic hypothesis regarding nucleation can be helpful in selecting operating variables for inclusion in the model. Two examples are (/) the effect of slurry circulation rate on nucleation has been used to develop a correlation for nucleation rate based on the tip speed of the impeller (16) and (2) the scaleup of nucleation kinetics for sodium chloride crystalliza tion provided an analysis of the role of mixing and mixer characteristics in contact nucleation (17). Pubhshed kinetic correlations have been reviewed through about 1979 (18). In a later section on population balances, simple power-law expressions are used to correlate nucleation rate data and describe the effect of nucleation on crystal size distribution. [Pg.343]

Additives can alter the rate of wet ball milling by changing the slurry viscosity or by altering the location of particles with respect to the balls. These effects are discussed under Tumbhng Mills. In conclusion, there is still no theoretical way to select the most effective additive. Empirical investigation, guided by the principles discussed earlier, is the only recourse. There are a number of commercially available grinding aids that may be tried. Also, a Idt of 450 surfactants that can be used for systematic trials (Model SU-450, Chem Service... [Pg.1833]

Dente and Ranzi (in Albright et al., eds.. Pyrolysis Theory and Industrial Practice, Academic Press, 1983, pp. 133-175) Mathematical modehng of hydrocarbon pyrolysis reactions Shah and Sharma (in Carberry and Varma, eds.. Chemical Reaction and Reaction Engineering Handbook, Dekker, 1987, pp. 713-721) Hydroxylamine phosphate manufacture in a slurry reactor Some aspects of a kinetic model of methanol synthesis are described in the first example, which is followed by a second example that describes coping with the multiphcity of reactants and reactions of some petroleum conversion processes. Then two somewhat simph-fied industrial examples are worked out in detail mild thermal cracking and production of styrene. Even these calculations are impractical without a computer. The basic data and mathematics and some of the results are presented. [Pg.2079]

Our communication describes grain size effect in XRF of powder and powder slurry-like substances in terms of the generalized model ... [Pg.113]

Guichardon etal. (1994) studied the energy dissipation in liquid-solid suspensions and did not observe any effect of the particles on micromixing for solids concentrations up to 5 per cent. Precipitation experiments in research are often carried out at solids concentrations in the range from 0.1 to 5 per cent. Therefore, the stirred tank can then be modelled as a single-phase isothermal system, i.e. only the hydrodynamics of the reactor are simulated. At higher slurry densities, however, the interaction of the solids with the flow must be taken into account. [Pg.49]

Theoretical representation of the behaviour of a hydrocyclone requires adequate analysis of three distinct physical phenomenon taking place in these devices, viz. the understanding of fluid flow, its interactions with the dispersed solid phase and the quantification of shear induced attrition of crystals. Simplified analytical solutions to conservation of mass and momentum equations derived from the Navier-Stokes equation can be used to quantify fluid flow in the hydrocyclone. For dilute slurries, once bulk flow has been quantified in terms of spatial components of velocity, crystal motion can then be traced by balancing forces on the crystals themselves to map out their trajectories. The trajectories for different sizes can then be used to develop a separation efficiency curve, which quantifies performance of the vessel (Bloor and Ingham, 1987). In principle, population balances can be included for crystal attrition in the above description for developing a thorough mathematical model. [Pg.115]

Mathews and Rawlings (1998) successfully applied model-based control using solids hold-up and liquid density measurements to control the filtrability of a photochemical product. Togkalidou etal. (2001) report results of a factorial design approach to investigate relative effects of operating conditions on the filtration resistance of slurry produced in a semi-continuous batch crystallizer using various empirical chemometric methods. This method is proposed as an alternative approach to the development of first principle mathematical models of crystallization for application to non-ideal crystals shapes such as needles found in many pharmaceutical crystals. [Pg.269]

Chemorheology is concerned with the chemical kinetics and the associated flow properties of a model reacting system. Energetic composite rheology is a continuously evolving process. The initial slurry viscosity is determined by the system temperature, plasticizer content... [Pg.712]

The simplest theory involved in mass transfer across an interface is film theory, as shown in Figure 3.10. In this model, the gas (CO) is transferred from the gas phase into the liquid phase and it must reach the surface of the growing cells. The rate equation for this case is similar to the slurry reactor as mentioned in Levenspiel.20... [Pg.58]

In a later publication, Kolbel et al. (K16) have proposed a less empirical model based on the assumption that the rate-determining steps for a slurry process are the catalytic reaction and the mass transfer across the gas-liquid interface. When used for the hydrogenation of carbon monoxide to methane, the process rate is expressed as moles carbon monoxide consumed per hour and per cubic meter of slurry ... [Pg.84]

Slesser and Highet (S15) have proposed a theoretical model for the case of a second-order chemical reaction taking place in a slurry reactor. This model is based on concepts very similar to those employed by Sherwood and Farkas, apart from the obvious complications resulting when one treats a second-order reaction. [Pg.86]

Calderbank et al. (C6) studied the Fischer-Tropsch reaction in slurry reactors of 2- and 10-in. diameters, at pressures of 11 and 22 atm, and at a temperature of 265°C. It was assumed that the liquid-film diffusion of hydrogen from the gas-liquid interface is a rate-determining step, whereas the mass transfer of hydrogen from the bulk liquid to the catalyst was believed to be rapid because of the high ratio between catalyst exterior surface area and bubble surface area. The experimental data were not in complete agreement with a theoretical model based on these assumptions. [Pg.119]

Wilson, K. C. and Puoh, F. ]. Can. Ji. Chem. Eng. 66 (1988) 721. Dispersive-force modelling of turbulent suspensions in heterogeneous slurry flow. [Pg.228]

Gas phase olefin polymerizations are becoming important as manufacturing processes for high density polyethylene (HOPE) and polypropylene (PP). An understanding of the kinetics of these gas-powder polymerization reactions using a highly active TiCi s catalyst is vital to the careful operation of these processes. Well-proven models for both the hexane slurry process and the bulk process have been published. This article describes an extension of these models to gas phase polymerization in semibatch and continuous backmix reactors. [Pg.201]

The kinetic models for the gas phase polymerization of propylene in semibatch and continuous backmix reactors are based on the respective proven models for hexane slurry polymerization ( ). They are also very similar to the models for bulk polymerization. The primary difference between them lies in the substitution of the appropriate gas phase correlations and parameters for those pertaining to the liquid phase. [Pg.201]

The semibatch model GASPP is consistent with most of the data published by Wisseroth on gas phase propylene polymerization. The data are too scattered to make quantitative statements about the model discrepancies. There are essentially three catalysts used in his tests. These BASF catalysts are characterized by the parameters listed in Table I. The high solubles for BASF are expected at 80 C and without modifiers in the recipe. The fact that the BASF catalyst parameters are so similar to those evaluated earlier in slurry systems lends credence to the kinetic model. [Pg.211]


See other pages where Slurry model is mentioned: [Pg.209]    [Pg.495]    [Pg.209]    [Pg.495]    [Pg.412]    [Pg.428]    [Pg.413]    [Pg.18]    [Pg.1631]    [Pg.1658]    [Pg.1775]    [Pg.1854]    [Pg.288]    [Pg.350]    [Pg.183]    [Pg.628]    [Pg.86]    [Pg.89]    [Pg.228]    [Pg.228]    [Pg.132]    [Pg.214]    [Pg.218]    [Pg.102]   


SEARCH



© 2024 chempedia.info