Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Petroleum conversion

Dente and Ranzi (in Albright et al., eds.. Pyrolysis Theory and Industrial Practice, Academic Press, 1983, pp. 133-175) Mathematical modehng of hydrocarbon pyrolysis reactions Shah and Sharma (in Carberry and Varma, eds.. Chemical Reaction and Reaction Engineering Handbook, Dekker, 1987, pp. 713-721) Hydroxylamine phosphate manufacture in a slurry reactor Some aspects of a kinetic model of methanol synthesis are described in the first example, which is followed by a second example that describes coping with the multiphcity of reactants and reactions of some petroleum conversion processes. Then two somewhat simph-fied industrial examples are worked out in detail mild thermal cracking and production of styrene. Even these calculations are impractical without a computer. The basic data and mathematics and some of the results are presented. [Pg.2079]

Driving forces that demand more efficient methodologies for catalyst development include new business opportunities (in all three major application areas of emission control, petroleum conversion, and chemicals), the high cost of empirical developments, and the increasing competitiveness... [Pg.237]

After World War II, the growth of automobile and aircraft transportation stimulated research on petroleum conversion processes. New synthetic fuel-producing processes were introduced that enabled the interconversion of oil fractions obtained by destination. These processes often used catalysts based on noble metals as well as solid acids, like the zeolites, applicable at high temperatures. Superacids were used as catalysts for alkylation to branched olefins for high-octane kerosene. Catalytic reforming with noble metals on acidic supports was introduced in the production of gasoline. Catalytic cracking became a major application of solid acids. [Pg.13]

Petroleum wax is used in the manufacture of candles, polishes, ointments and for waterproofing purposes. Waxes are also used as a cracking feedstock for the production of 1-alkene.s for conversion to detergents. [Pg.302]

Incidentally, numerous petroleum products, particularly those coming from conversion processes, are unstable with respect to oxidation and oxygen analysis is meaningful only if great precautions are taken during sample withdrawal and storage. [Pg.30]

Biedermann, J.M., J.-P. Peries and J. Bousquet (1987), SOLVAHL an attractive way to provide conversion units with high quality feedstocks . National Petroleum Refiners Association (NPRA) paper No. AM-87-41, Annual meeting, San Antonio, TX. [Pg.453]

Mariette, L., A. Billon and T. Descourieres (1988), Hyvahl process for high conversion of resids . Japanese Petroleum Institute Conference, Tokyo. [Pg.457]

Even if all of the elements described so far have been present within a sedimentary basin an accumulation will not necessarily be encountered. One of the crucial questions in prospect evaluation is about the timing of events. The deformation of strata into a suitable trap has to precede the maturation and migration of petroleum. The reservoir seal must have been intact throughout geologic time. If a leak occurred sometime in the past, the exploration well will only encounter small amounts of residual hydrocarbons. Conversely, a seal such as a fault may have developed early on in the field s history and prevented the migration of hydrocarbons into the structure. [Pg.14]

Procedure 1. Dissolve 1 g. of the compound in 5 ml. of chloroform in a test-tube and cool in ice. Add 5 ml. of chlorosulphonic acid CA UTION in handhng) dropwise and with shaking. When the initial evolution of hydrogen chloride subsides, remove the reaction mixture from the ice and, after 20 minutes, pour it into a 50 ml. beaker filled with crushed ice. Separate the chloroform layer, wash it well with water, and evaporate the solvent. Recrystallise the residual aryl sulphonyl chloride from light petroleum (b.p. 40-60°), chloroform or benzene this is not essential for conversion into the sulphonamide. [Pg.543]

The alcohol may be purified by conversion into the calcium chloride addition compound. Treat it with anhydrous calcium chloride much heat is evolved and the addition compound is formed. After several hours, remove any oil which has not reacted by washing with petroleum ether (b.p. 60-80°). Decompose the solid with ice water, separate the alcohol, dry and distil. [Pg.816]

Conventional crude oils Conventional petroleum Convergence methods Conversion processes Convertal... [Pg.246]

Coal is used ia industry both as a fuel and ia much lower volume as a source of chemicals. In this respect it is like petroleum and natural gas whose consumption also is heavily dominated by fuel use. Coal was once the principal feedstock for chemical production, but ia the 1950s it became more economical to obtain most industrial chemicals from petroleum and gas. Nevertheless, certain chemicals continue to be obtained from coal by traditional routes, and an interest in coal-based chemicals has been maintained in academic and industrial research laboratories. Much of the recent activity in coal conversion has been focused on production of synthetic fuels, but significant progress also has been made on use of coal as a chemical feedstock (see Coal CONVERSION processes). [Pg.161]

There are many different routes to organic chemicals from biomass because of its high polysaccharide content and reactivity. The practical value of the conversion processes selected for commercial use with biomass will depend strongly on the availabiUty and price of the same chemicals produced from petroleum and natural gas. [Pg.28]

Prior to the discovery of plentihil suppHes of natural gas, and depending on the definition of the resources (1), there were plans to accommodate any shortfalls in gas supply from soHd fossil fuels and from gaseous resources by the conversion of hydrocarbon (petroleum) Hquids to lower molecular weight gaseous products. [Pg.74]

Liquid Fuels via Methanol Synthesis and Conversion. Methanol is produced catalyticaHy from synthesis gas. By-products such as ethers, formates, and higher hydrocarbons are formed in side reactions and are found in the cmde methanol product. Whereas for many years methanol was produced from coal, after World War II low cost natural gas and light petroleum fractions replaced coal as the feedstock. [Pg.82]

Occidental Petroleum Coal Conversion Process. Garrett R D Co. (now the Occidental Research Co.) developed the Oxy Coal Conversion process based on mathematical simulation for heating coal particles in the pyrolysis unit. It was estimated that coal particles of 100-mm diameter could be heated throughout their volumes to decomposition temperature (450—540°C) within 0.1 s. A large pilot faciUty was constmcted at LaVeme, California, in 1971. This unit was reported to operate successfully at feed rates up to 136 kg/h (3.2 t/d). [Pg.94]

Imperial Chemical Industries (ICI) operated a coal hydrogenation plant at a pressure of 20 MPa (2900 psi) and a temperature of 400—500°C to produce Hquid hydrocarbon fuel from 1935 to the outbreak of World War II. As many as 12 such plants operated in Germany during World War II to make the country less dependent on petroleum from natural sources but the process was discontinued when hostihties ceased (see Coal conversion PROCESSES,liquefaction). Currentiy the Fisher-Tropsch process is being used at the Sasol plants in South Africa to convert synthesis gas into largely ahphatic hydrocarbons at 10—20 MPa and about 400°C to supply 70% of the fuel needed for transportation. [Pg.76]

Thiophene [110-02-17, C H S, and dibenzothiophene [132-65-OJ C22HgS, are models for the organic sulfur compounds found in coal, as well as in petroleum and oil shale. Cobalt—molybdenum and nickel—molybdenum catalysts ate used to promote the removal of organic sulfur (see Coal CONVERSION... [Pg.416]

The red tetrathiomolybdate ion appears to be a principal participant in the biological Cu—Mo antagonism and is reactive toward other transition-metal ions to produce a wide variety of heteronuclear transition-metal sulfide complexes and clusters (13,14). For example, tetrathiomolybdate serves as a bidentate ligand for Co, forming Co(MoSTetrathiomolybdates and their mixed metal complexes are of interest as catalyst precursors for the hydrotreating of petroleum (qv) (15) and the hydroHquefaction of coal (see Coal conversion processes) (16). The intermediate forms MoOS Mo02S 2> MoO S have also been prepared (17). [Pg.470]

Naphthenic acid corrosion has been a problem ia petroleum-refining operations siace the early 1900s. Naphthenic acid corrosion data have been reported for various materials of constmction (16), and correlations have been found relating corrosion rates to temperature and total acid number (17). Refineries processing highly naphthenic cmdes must use steel alloys 316 stainless steel [11107-04-3] is the material of choice. Conversely, naphthenic acid derivatives find use as corrosion inhibitors ia oil-weU and petroleum refinery appHcations. [Pg.510]

Other Specialty Chemicals. In fuel-ceU technology, nickel oxide cathodes have been demonstrated for the conversion of synthesis gas and the generation of electricity (199) (see Fuel cells). Nickel salts have been proposed as additions to water-flood tertiary cmde-oil recovery systems (see Petroleum, ENHANCED oil recovery). The salt forms nickel sulfide, which is an oxidation catalyst for H2S, and provides corrosion protection for downweU equipment. Sulfur-containing nickel complexes have been used to limit the oxidative deterioration of solvent-refined mineral oils (200). [Pg.15]


See other pages where Petroleum conversion is mentioned: [Pg.13]    [Pg.508]    [Pg.4]    [Pg.284]    [Pg.13]    [Pg.508]    [Pg.4]    [Pg.284]    [Pg.302]    [Pg.453]    [Pg.12]    [Pg.300]    [Pg.944]    [Pg.175]    [Pg.133]    [Pg.176]    [Pg.268]    [Pg.76]    [Pg.389]    [Pg.161]    [Pg.161]    [Pg.163]    [Pg.577]    [Pg.1]    [Pg.74]    [Pg.78]    [Pg.97]    [Pg.418]    [Pg.547]    [Pg.277]    [Pg.477]    [Pg.488]   
See also in sourсe #XX -- [ Pg.102 , Pg.103 , Pg.104 ]




SEARCH



Conversion of Petroleum Pyrolysis

Petroleum crude conversion

Petroleum fuel conversion, high-sulfur residual

© 2024 chempedia.info