Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Short-Term Load Behavior

The mechanical properties of plastics enable them to perform in a wide variety of end uses and environments, often at lower cost than other design materials such as metal or wood. This section reviews the static property tests. Chapter 5 provides more information on the meaning of these type data. [Pg.45]

As reviewed thermoplastics (TPs) being viscoelastic materials respond to induced stress by two mechanisms viscous flow and elastic deformation. Viscous flow ultimately dissipates the applied mechanical energy as frictional heat and results in permanent material deformation. Elastic deformation stores the applied mechanical energy as completely recoverable material deformation. The extent to which one or the other of these mechanisms dominates the overall response of the material is determined by the temperature and by the duration and magnitude of the stress or strain. The higher the temperature, the most freedom of movement of the individual plastic molecules that comprise the [Pg.45]

TP and the more easily viscous flow can occur with lower mechanical performances. [Pg.45]

Likewise, the longer the duration of material stress or strain, the more time for viscous flow to occur. Finally, the greater the material stress or strain, the greater the likelihood of viscous flow and significant permanent deformation. For example, when a TP product is loaded or deformed beyond a certain point, the material comprising it yields and immediate or eventually fails. Conversely, as the temperature or the duration or magnitude of material stress or strain decreases, viscous flow becomes less likely and less significant as a contributor to the overall response of the material and the essentially instantaneous elastic deformation mechanism becomes predominant. [Pg.45]

Consequently, changing the temperature or the strain rate of a TP may have a considerable effect on its observed stress-strain behavior. At lower temperatures or higher strain rates, the stress-strain curve of a TP may exhibit a steeper initial slope and a higher yield stress. In the extreme, the stress-strain curve may show the minor deviation from initial linearity and the lower failure strain characteristic of a brittle material. [Pg.45]


This modulus value is often arbitrarily chosen, although several methods have been suggested for arriving at a suitable value. One is to plot a secant modulus based on 1% strain or that is 0.85% of the initial tangent modulus (Chapter 2, SHORT-TERM LOAD BEHAVIOR). However, for many plastics, particularly the crystalline TPs, this method is too restrictive, so in most practical situations the limiting strain is decided in consultation... [Pg.132]

More or less implicit in the theory of materials of this type is the assumption that all the fibers are straight and unstressed or that the initial stresses in the individual fibers are essentially equal. In practice this is quite unlikely to be true. It is expected, therefore, that as the load is increased some fibers will reach their breaking points first. As they fail, their loads will be transferred to other as yet unbroken fibers, so that the successive breaking of fibers rather than the simultaneous breaking of all of them will cause failure. As reviewed in Chapter 2 (SHORT TERM LOAD BEHAVIOR, Tensile Stress-Strain, Modulus of elasticity) the result is usually the development of two or three moduli. [Pg.358]

The tensile modulus is an important property that provides the designer with information for a comparative evaluation of plastic material and also provides a basis for predicting the short-term behavior of a loaded product. Care must be used in applying the tensile modulus data to short-term loads to be sure that the conditions of the test are comparable to those in use. The longer-term modulus is treated under the creep test (Chapter 2). [Pg.310]

Figure 9.2 shows the short-term transient behavior of a fuel cell as obtained from a dynamic model derived from experimental electrochemical impedance studies (Qi et al., 2005). Figure 9.2a shows the cell voltage versus time due to two different resistive load changes (a resistance increase and decrease). The inset shows the existence of three distinct process timescales. The first, A VRn. is an immediate response in the cell voltage which results from pure resistive elements within the cell. The second, A VRrl. is also relatively fast (circa sub-millisecond), that results from the time it takes a charge transfer process at the electrode-electrolyte interface to... [Pg.272]

Under quasi-static loading, or in conditions under which short-term loading responses are expected to occur [27], both meniscal and discal tissues may be modeled as linear elastic and orthotropic. Under a constant load rate, the non-linear behavior may be described by an exponential stress-strain relationship given by... [Pg.51]

Different viscoelastic materials may have considerably different creep behavior at the same temperature. A given viscoelastic material may have considerably different creep behavior at different temperatures. Viscoelastic creep data are necessary and extremely important in designing products that must bear long-term loads. It is inappropriate to use an instantaneous (short load) modulus of elasticity to design such structures because they do not reflect the effects of creep. Viscoelastic creep modulus, on the other hand, allows one to estimate the total material strain that will result from a given applied stress acting for a given time at the anticipated use temperature of the structure. [Pg.64]

Viscoelastic and rate theory To aid the designer the viscoelastic and rate theories can be used to predict long-term mechanical behavior from short-term creep and relaxation data. Plastic properties are generally affected by relatively small temperature changes or changes in the rate of loading application. [Pg.113]

Plastics have the widest variety and range of mechanical properties of all materials (Figs. 1-8 and 7-1 and 7-2). They vary from basically soft to hard, rigid solids. Great many structural factors determine the nature of their mechanical behavior, such as whether a load occurs over the short term or the long... [Pg.375]

Fortunately for linear amorphous polymers, modulus is a function of time and temperature only (not of load history). Modulus-time and modulus-temperature curves for these polymers have identieal shapes they show the same regions of viscoelastic behavior, and in each region the modulus values vary only within an order of magnitude. Thus, it is reasonable to assume from such similarity in behavior that time and temperature have an equivalent effect on modulus. Such indeed has been found to be the case. Viscoelastic properties of linear amorphous polymers show time-temperature equivalence. This constitutes the basis for the time-temperature superposition principle. The equivalence of time and temperature permits the extrapolation of short-term test data to several decades of time by carrying out experiments at different temperatures. [Pg.414]

The successfiil application of time-temperature superposition (169) for polystyrene foam is particularly significant in that it allows prediction of long-term behavior from short-term measurements. This is of interest in building and construction applications where load bearing and dimensional change are important. [Pg.1046]

This section introduces the behavior and response of both unreinforced and reinforced plastics under loads lasting usually only a few seconds or minutes up to a maximum of fifteen minutes. Such short-term tests are used to define the basic or reference designing and engineering properties of conventional materials. Such properties as tensile strength, compressive strength, flexural strength (the modulus of rupture), shear strength, and associated elastic moduli are often shown on the data sheets provided by suppliers of plastic materials and are in computerized data banks. The influence of such factors as time, temperature, additives and reinforcements, and molecular orientation on the basic behavior of these properties is discussed in turn [1, 2, 10-14, 62-68, 245-87]. [Pg.135]

This chapter has thus far dealt with the behavior of plastics and composites during short-and long-term loading conditions. As with any material, the properties obtained under... [Pg.201]

An accepted criterion for describing high-temperature performance of a plastic is the deflection temperature under load (DTUL). This is based on a short-term test that identifies the temperature at which a polymer distorts beyond acceptable limits. It has the limitation of not being able to predict long-term behavior but is a convenient method by which to compare materials. [Pg.72]

Indeed, carbon black-filled rubber, when loaded with time-dependent external forces, suffers a state of stress which is the superposition of two different aspects a time independent, long-term, behavior (sometimes improperly called hyperelastic ) opposed to a time dependent, short-term, response. Step-strain relaxation tests suggest that short term stresses are larger than the long term or quasi-static ones [117]. Moreover, oscillatoiy (sinusoidal) tests indicate that dissipative anelastic effects are significant, which leads to the consideration of a constitutive relation which depends not only on the current value of the strain but on the entire strain history. This assumption must be in accordance with some principles which restrict the class of rehable constitutive equations. These restrictions can be classified as physical and constitutive . The former are restrictirMis to which every rational physical theory must be subjected to, e.g., frame indifference. The latter, on the other hand, depends upon the material under consideration, e.g., internal symmetries. [Pg.239]

The behavior of component parts under short-term temperature effects depends on both product specific thermal properties and the duration and type of the temperature effect as well as on loading. The design and processing of the component part are also decisive. [Pg.45]

The short-term behavior of plastics under thermal loading is determined by their softening behavior and physical aging processes, whereas long-term behavior is mainly dominated by chemical degradation. [Pg.45]

Peak temperature load 676 Short-term behavior... [Pg.1431]


See other pages where Short-Term Load Behavior is mentioned: [Pg.45]    [Pg.45]    [Pg.217]    [Pg.485]    [Pg.210]    [Pg.174]    [Pg.44]    [Pg.93]    [Pg.343]    [Pg.108]    [Pg.4921]    [Pg.205]    [Pg.205]    [Pg.181]    [Pg.350]    [Pg.539]    [Pg.299]    [Pg.62]    [Pg.117]    [Pg.446]    [Pg.20]    [Pg.6646]    [Pg.108]    [Pg.189]    [Pg.458]    [Pg.583]    [Pg.313]    [Pg.62]    [Pg.275]    [Pg.382]    [Pg.890]   


SEARCH



Loading, short-term

Short-term

Short-term behavior

Short-term loads

© 2024 chempedia.info