Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Product shape selectivity , zeolite

At the low-molecular-weight end of the spectrum, a process newly commercialized by Mobil for converting methanol into gasoline has significantly expanded opportunities in C-1 chemistry— the upgrading of one-carbon molectrles to mrrlticarbon products. The process involves the use of ZSM-5, a shape-selective zeolite catalyst. (See "Zeolite and Shape-Selective Catalysts" in Chapter 9.)... [Pg.102]

Shape-selective zeolites can also be used to discriminate among potential products of a chemical reaction, a property called product shape selectivity. In this case, the product produced is the one capable of escaping from the zeolite pore structure. This is the basis of the selective conversion of methanol to gasoline over... [Pg.171]

Zeolite chemistry is an excellent example of how a three-dimensional surface can alter the course of chemical reactions, selecting for one product out of a host of potential candidates. In addition to the many commercial applications that they have found, shape-selective zeolites have provided the basis for a rich new area of catalytic science and technology, one expected to spawn yet more materials, knowledge, and applications. [Pg.172]

The alkylation of phenol investigated over H-MCM-22, H-ITQ-2 and H-MCM-36 showed that the delamelation and pillaring did not improve the catalytic activity and this was explained on the secondary processes taking place during the preparation of the corresponding materials, and which strongly affect the total acidity and the acidity on the external surface. Also, the composition of the reaction products is not influenced to a considerable extent by product shape selectivity effects. This seems to show that the tert-butylation reaction preferentially proceed at (or close to) the external surface of the zeolite layers. [Pg.359]

The first mode of the high resolution C-NMR of adsorbed molecules was recently reviewed Q-3) and the NMR parameters were thoroughly discussed. In this work we emphasize the study of the state of adsorbed molecules, their mobility on the surface, the identification of the surface active sites in presence of adsorbed molecules and finally the study of catalytic transformations. As an illustration we report the study of 1- and 2-butene molecules adsorbed on zeolites and on mixed tin-antimony oxides (4>3). Another application of this technique consists in the in-situ identification of products when a complex reaction such as the conversion of methanol, of ethanol (6 7) or of ethylene (8) is run on a highly acidic and shape-selective zeolite. When the conversion of methanol-ethylene mixtures (9) is considered, isotopic labeling proves to be a powerful technique to discriminate between the possible reaction pathways of ethylene. [Pg.104]

There are four widely accepted theories of shape selectivity reactant shape selectivity (RSS), product shape selectivity (PSS), transition state selectivity (TSS) (Figure 12.2), and concentration effect all of them are based on the hypothesis that the reactions occur within the zeolite micropores only. As indicated earlier, this hypothesis is often verified, the external surface area of the commonly used zeolites being much lower (one to two orders of magnitude) than their internal surface area. ... [Pg.236]

There are several means to maximize the yield in the desired monoalkylation product high aromatic/alkylation agent ratio, association of a transalkylation unit to the alkylation unit, and use of a shape selective zeolite as catalyst. [Pg.240]

Meta-xylene isomerization to ortho- and para-xylene over 10- and 12-MR zeolites is another illustration of product shape selectivity effects [13]. The two products are essentially equally favorable from the standpoint of thermodynamics. With decreasing pore size, however, kinetics come into play and the selectivity to para-xylene increases, as illustrated in Figure 13.37 for results obtained at 317-318°C, 0.5 kPa meta-xylene pressure (in the presence of He carrier gas) and 10% conversion [64]. While the para ortho ratio is typically 1.0-1.5 with multi-dimensional... [Pg.445]

The catalytic isomerization of 1-methylnaphthalene and all lation of 2-methylnaphtha-lene with methanol were studied at ambient pressure in a flow-type fixed bed reactor. Acid zeolites with a Spaciousness Index between ca. 2 and 16 were found to be excellent isomerization catalysts which completely suppress the undesired disproportionation into nwhthalene and dimethylnaphthalenes due to transition state shape selectivity. Examples are HZSM-12, H-EU-1 and H-Beta. Optimum catalysts for the shape selective methylation of 2-methylnaphthalene are HZSM-5 and HZSM-li. All experimental finding concerning this reaction can be readily accounted for by conventional product shape selectivity combined with coke selectivation, so there is no need for invoking shape selectivity effects at the external surface or "nest effects", at variance with recent pubhcations from other groups. [Pg.291]

We interprete the above effects as conventional product shape selectivity inside the pore system of zeolite ZSM-5 or ZSM-11, and part of our arguments were presented earlier, in a preliminary note [28]. While the catalyst is on stream, coke is gradually formed and deposits, in part, inside the channel system. As a consequence, the diffusion pathways for product molecules increase. Slim molecules, such as 2,6-dimethylnaphthalene are less affected than... [Pg.298]

A different product distribution is obtained by shape-selective zeolites.85,86 Since the diffusion coefficient of p-xylene with its preferred shape into the zeolite... [Pg.172]

Shape selective reactions are typically carried out over zeolites, molecular sieves and other porous materials. There are three major classifications of shape selectivity including (1) reactant shape selectivity where reactants of sizes less than the pore size of the support are allowed to enter the pores to react over active sites, (2) product shape selectivity where products of sizes smaller than the pore dimensions can leave the catalyst and (3) transition state shape selectivity where sizes of pores can influence the types of transition states that may form. Other materials like porphyrins, vesicles, micelles, cryptands and cage complexes have been shown to control product selectivities by shape selective processes. [Pg.16]

Transition-state selectivity is sometimes difficult to distinguish from product shape selectivity. A recent study by Kim et al. (8) shows that the high para-selectivity for the alkylation of ethylbenzene with ethanol in metallosilicates (MeZSM-5) is not due to product selectivity alone. They conclude that the primary product of the alkylation on ZSM-5 type metallosilicates is p-diethylbenzene which isomerizes further inside the cavity of ZSM-5 to other isomers. As the acid sites of zeolites becomes weaker (achieved by substituting different metals into the framework of the zeolite), the isomerization of the primarily produced p-isomer is suppressed. Although Kim et al. attribute this suppression of the isomerization activity to restricted transition-state selectivity, it is more likely that this suppression is due to the decrease in acid strength. [Pg.212]

Basically, reactant and product selectivities are mass transfer effects, where the diffusivities of the various species in practice frequently do not differ that extremely as indicated above. Instead, in most cases only a preferred diffusion of certain species is observed, a fact which often hinders a clear understanding of product shape selectivity. This is because the various products, during their way through the pore system, may be reacted when contacting the catalytically active surface of the wall. This combined effect of diffusion and reaction will be discussed in detail in the following, as it is of great importance for the product distribution in zeolite-catalyzed reactions. [Pg.359]

Olson and Haag [80] in 1983 showed that the yield of p-xylene observed during the disproportionation of toluene on various modified and unmodified ZSM-5 catalysts is actually influenced by product shape selectivity. The authors attributed the observed effects to an interaction of diffusion and reaction, characterized by means of a dimensionless modulus similar to the classical Thiele modulus . The mathematical treatment of shape selectivity in zeolite catalysts, which will be applied in this section, is largely based on the theory of Olson and Haag [80], although some modifications and extensions to this are given. [Pg.359]

Separation of molecules with different sizes can be achieved by a proper choice of zeolites (nature of the zeolite and adjustment of the pore architecture, especially the pore size). The simplest forms of shape selectivity come from the impossibility of certain molecules in a reactant mixture entering the zeolite pores (reactant shape selectivity) or of certain product molecules (formed inside the pore network) exiting from these pores (product shape selectivity). In practice, reactant and product shape selectivities are observed not only when the size of molecules is larger than the size of the pore apertures (size exclusion) but also when their diffusion rate is significantly lower than that of the other molecules. Differences of diffiisivities by 2 orders of magnitude are required to produce significant selectivities between reactant species (35). [Pg.16]

Shape selectivity in reactant, transition state, and product shape selectivity, the spatial constraints of the zeolite channels or pore mouths discriminate between molecules with different sizes and forms... [Pg.262]

The production of gasoline from methanol is a parallel process to the Fischer-Tropsch synthesis of hydrocarbons from syngas (Section 4.7.2). A shape-selective zeolite (ZSM-5) was the catalyst of choice in the process put on stream in 1987 by Mobil in New Zealand however the plant was later closed. The zeolite was used at ca. 400°C in a fluid catalyst reactor, which allows prompt removal of the heat of reaction. [Pg.170]

Figure 6 illustrates product shape selectivity, i.e., the capacity of favouring the formation, among all possible products, of those that diffuse faster out of the pores. While the entire range of products can be present inside zeolite channels and cavities, the effluent stream is mainly composed of the less hindered... [Pg.278]

One of the most in ortant properties of zeolites is their ability to cany out shqie selective reactions [5]. These can be cl sified as, firstfy, product shape selective reactions in which the only products formed are those which can diffiise out of e pores of die zeolite, second, reactant shape selective reactions which occur when some of the molecules in a reactant mbcture are too large to diffiise through the catalyst pores, and, thirdfy, restricted transition-state selective reactions in which the only reactions which occur are those in which qiace exists in the pores or cavities to allow the formation of the activated transition state con lex. In some cases where the zeolite is three dimensional the gze of the channel intersections will also be a determining ictor. This unique catalytic property is related to the pore size of the zeolite and has led to the synthesis of zeohtes with a very w e range of pore gzes. [Pg.324]

Of the three possible types of shape selectivity [1] - due again to the ZSM structure — the predominant (but not exclusive) formation of para-xylene may indicate a moderate product shape-selectivity. The appearance of meta- (and also ort/io-xylene) points to the non-negligible catalytic role of the outer surface of presumable larger zeolite crystallites [1] with some Pt particles present on them [19]. [Pg.596]


See other pages where Product shape selectivity , zeolite is mentioned: [Pg.403]    [Pg.416]    [Pg.438]    [Pg.442]    [Pg.443]    [Pg.444]    [Pg.446]    [Pg.360]    [Pg.118]    [Pg.246]    [Pg.1624]    [Pg.43]    [Pg.46]    [Pg.28]    [Pg.210]    [Pg.355]    [Pg.181]    [Pg.360]    [Pg.17]    [Pg.292]    [Pg.25]    [Pg.565]    [Pg.339]    [Pg.340]    [Pg.362]    [Pg.521]    [Pg.296]    [Pg.584]   


SEARCH



Product selection

Product shape selectivity , zeolite catalysis

Selectivity product shape

Shape product

Shape selection

Shape selectivity

Shape-selective zeolite

Shaped products

Zeolite production

Zeolites shape selectivity

© 2024 chempedia.info