Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Selective Composite Membranes

Except from the tuned permeability that concave brushes may present, there are also other interesting possibilities involving (1) the trapping of molecules inside membranes and their controlled release upon collapse of the brush layer, a function of obvious relation to drug delivery (2) the development of size-selective composite membranes for dissolved polymers in solution (nanofiltration) [35] and (3) the fabrication of pore-brush systems that are sensitive to the presence of specific molecules by the appropriate modification/functionalization of the grafted chains [46]. [Pg.128]

Although these composite fibers were developed for reverse osmosis their acceptance in the desalination industry has been limited due to insufficient selectivity and oxidative stabiUty. The concept, however, is extremely viable composite membrane fiat films made from interfacial polymerisation (20) have gained wide industry approval. HoUow fibers using this technique to give equivalent properties and life, yet to be developed, should be market tested during the 1990s. [Pg.151]

Considerable research and development effort is being placed on a chlorine-resistant membrane that wiU maintain permeabUity and selectivity over considerable time periods (years). This polymer activity is not limited to hoUow fibers, but the thick assymetric skin of hoUow-fiber constmction might offer an advantage in resolving the end use need as opposed to the ultrathin dat-sheet composite membranes. [Pg.155]

Interfacial polymerization membranes are less appHcable to gas separation because of the water swollen hydrogel that fills the pores of the support membrane. In reverse osmosis, this layer is highly water swollen and offers Httle resistance to water flow, but when the membrane is dried and used in gas separations the gel becomes a rigid glass with very low gas permeabiUty. This glassy polymer fills the membrane pores and, as a result, defect-free interfacial composite membranes usually have low gas fluxes, although their selectivities can be good. [Pg.68]

Most commercially available RO membranes fall into one of two categories asymmetric membranes containing one polymer, or thin-fHm composite membranes consisting of two or more polymer layers. Asymmetric RO membranes have a thin ( 100 nm) permselective skin layer supported on a more porous sublayer of the same polymer. The dense skin layer determines the fluxes and selectivities of these membranes whereas the porous sublayer serves only as a mechanical support for the skin layer and has Httle effect on the membrane separation properties. Asymmetric membranes are most commonly formed by a phase inversion (polymer precipitation) process (16). In this process, a polymer solution is precipitated into a polymer-rich soHd phase that forms the membrane and a polymer-poor Hquid phase that forms the membrane pores or void spaces. [Pg.144]

An important variant is the composite membrane in which a relatively porous membrane (vviiich oFten has its ovvm sldn) is coated bv an even more selective laver, applied bv a technique resulting in a verv thin separating laver. [Pg.2026]

The first and very simple solid contact polymeric sensors were proposed in the early 1970s by Cattrall and Freiser and comprised of a metal wire coated with an ion-selective polymeric membrane [94], These coated wire electrodes (CWEs) had similar sensitivity and selectivity and even somewhat better DLs than conventional ISEs, but suffered from severe potential drifts, resulting in poor reproducibility. The origin of the CWE potential instabilities is now believed to be the formation of a thin aqueous layer between membrane and metal [95], The dominating redox process in the layer is likely the reduction of dissolved oxygen, and the potential drift is mainly caused by pH and p02 changes in a sample. Additionally, the ionic composition of this layer may vary as a function of the sample composition, leading to additional potential instabilities. [Pg.125]

Selectivity is one of the most important characteristics of an electrode, as it often determines whether a reliable measurement in the sample is possible or not. In practice, most pH sensitive membranes will also respond slightly to some interfering ions. As can be seen in Eq. (5), the potential of such a membrane is governed mainly by the activity of the hydrogen ion and also by the concentration of other interfering ions. To improve selectivity, advanced membrane compositions or protection membranes with size-exclusion or ion-exchange properties are often utilized. [Pg.292]

Most transport vesicles bud off as coated vesicles, with a unique set of proteins decorating their cytosolic surface. The coat has two major known functions. First, it concentrates and selects specific membrane proteins in a discrete portion of donor organelle membrane that will serve as origin to the transport vesicle. Second, the assembly of coat proteins into curved structures delineates the area of the forming transport vesicle. The size and curvature is a function of the coat composition. Thus, vesicles with similar vesicle coat have closely similar size and shape [3]. [Pg.141]

Liu, C. and Martin, G. R. 1990. Ion-transporting composite membranes III. Selectivity and rate of ion transport in Nafion-impregnated Gore-Tex membranes by a high-temperature solution casting method. Journal of the Electrochemical Society 137 3114-3120. [Pg.186]

Finally the synthesis of inorganic-polymer composite membranes should be mentioned. Several attempts have been made to combine the high permeability of inorganic membranes with the good selectivity of polymer membranes. Furneaux and Davidson (1987) coated a anodized alumina with polymer films. The permeability increased by a factor of 100, as compared to that in the polymer fiber, but the selectivities were low (H2/O2 = 4). Ansorge (1985) made a supported polymer film and coated this film with a thin silica layer. Surprisingly, the silica layer was found to be selective for the separation mixture He-CH4 with a separation factor of 5 towards CH4. The function of the polymer film is only to increase the permeability. No further data are given. [Pg.111]

Albany International Research Co. has developed an advanced hollow fiber composite reverse osmosis membrane and module under the name of Quantro II . This composite membrane is comprised of a porous hollow fiber substrate on which has been deposited a rejection barrier capable of fluxes of commercial importance at high rejection of dissolved salts at elevated temperatures. Resistance to active chlorine has been demonstrated. Proprietary processes have been developed for spinning of the fiber, establishment of the rejection barrier and processing of the fiber to prepare modules of commercial size. Prototype modules are currently in field trials against brackish and seawater feed solutions. Applications under consideration for this membrane include brackish and seawater desalination as well as selected industrial concentration processes. [Pg.367]

Solutions of macromolecules may be concentrated by means of polymer membranes of defined pore size. Applying a pressure or centrifugal force, small molecules pass the pores, whereas large molecules retain. The nominal cutoff of an ultrafiltration membrane (MWCO) helps you to select a membrane Molecules smaller than the MWCO will pass the membrane, whereas larger molecules are held back. This separation is not sharp and depends on protein conformation and solvent composition. Complete retention is achieved when using a membrane with a MWCO 1/3 to 1/5 of the molar mass of the macromolecule of interest. Figure 3.6 illustrates the separation of proteins by ultrafiltration. [Pg.127]

Nanofiltration membranes usually have good rejections of organic compounds having molecular weights above 200—500 (114,115). NF provides the possibility of selective separation of certain organics from concentrated monovalent salt solutions such as NaCl. The most important nanofiltration membranes are composite membranes made by interfacial polymerization. Polyamides made from piperazine and aromatic acyl chlorides are examples of widely used nanofiltration membrane. Nanofiltration has been used in several commercial applications, among which are demineralization, oiganic removal, heavy-metal removal, and color removal (116). [Pg.155]

Two different RO membrane types were evaluated in this study. The first was a standard cellulose acetate based asymmetric membrane. The second type, a proprietary cross-linked polyamine thin-film composite membrane supported on polysulfone backing, was selected to represent potentially improved (especially for organic rejection) membranes. Manufacturer specifications for these membranes are provided in Table III. Important considerations in the selection of both membranes were commercial availability, high rejection (sodium chloride), and purported tolerance for levels of chlorine typically found in drinking water supplies. Other membrane types having excellent potential for organic recovery were not evaluated either because they were not commercially... [Pg.434]

The overwhelming conclusion supported by data is the superiority of the FT-30 composite membrane for the majority of organic compounds tested. From arguments presented earlier, improved recovery of organic compounds on the basis of these higher rejection properties would be expected. Data from selected literature sources (6, 10-20) on membrane rejections of organics in water at parts-per-million levels were reviewed. Results are presented by chemical class in Table VI. Data are compiled for cellulose acetate and a cross-linked NS-1-type composite membrane. Differences in the rejection of various compound classes by the two membrane types determined at higher solute levels are similar to those observed and reported here at parts-per-billion levels. [Pg.441]


See other pages where Selective Composite Membranes is mentioned: [Pg.55]    [Pg.55]    [Pg.369]    [Pg.454]    [Pg.55]    [Pg.55]    [Pg.369]    [Pg.454]    [Pg.144]    [Pg.147]    [Pg.155]    [Pg.2194]    [Pg.357]    [Pg.196]    [Pg.431]    [Pg.47]    [Pg.298]    [Pg.302]    [Pg.310]    [Pg.312]    [Pg.316]    [Pg.316]    [Pg.316]    [Pg.656]    [Pg.123]    [Pg.130]    [Pg.134]    [Pg.470]    [Pg.31]    [Pg.112]    [Pg.333]    [Pg.217]    [Pg.256]    [Pg.144]    [Pg.147]    [Pg.432]    [Pg.302]   


SEARCH



Membrane composite

Membrane selection

Membrane selectivity

Membrane, selectively permeable composition

Membranes composition

Nafion composite membranes methanol selectivity

Selection compositional

© 2024 chempedia.info