Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Seawater acidity

Material Industrial atmosphere Fresh water Seawater Acid (H2S04, 5-15% concentration) Alkali (8%)... [Pg.64]

The elements listed in the table of Figure 15.2 are of importance as environmental contaminants, and their analysis in soils, water, seawater, foodstuffs and for forensic purposes is performed routinely. For these reasons, methods have been sought to analyze samples of these elements quickly and easily without significant prepreparation. One way to unlock these elements from their compounds or salts, in which form they are usually found, is to reduce them to their volatile hydrides through the use of acid and sodium tetrahydroborate (sodium borohydride), as shown in Equation 15.1 for sodium arsenite. [Pg.99]

Silver reduces the oxygen evolution potential at the anode, which reduces the rate of corrosion and decreases lead contamination of the cathode. Lead—antimony—silver alloy anodes are used for the production of thin copper foil for use in electronics. Lead—silver (2 wt %), lead—silver (1 wt %)—tin (1 wt %), and lead—antimony (6 wt %)—silver (1—2 wt %) alloys ate used as anodes in cathodic protection of steel pipes and stmctures in fresh, brackish, or seawater. The lead dioxide layer is not only conductive, but also resists decomposition in chloride environments. Silver-free alloys rapidly become passivated and scale badly in seawater. Silver is also added to the positive grids of lead—acid batteries in small amounts (0.005—0.05 wt %) to reduce the rate of corrosion. [Pg.61]

In preparation of MgCl2 from seawater, magnesium hydroxide, Mg(OH)2, is first precipitated from seawater by the addition of dolime or lime. This is then treated with hydrochloric acid to produce a neutralized magnesium chloride solution. The solution obtained is evaporated and converted into soHd magnesium chloride hexahydrate (60,61). [Pg.343]

The advent of a large international trade in methanol as a chemical feedstock has prompted additional purchase specifications, depending on the end user. Chlorides, which would be potential contaminants from seawater during ocean transport, are common downstream catalyst poisons likely to be excluded. Limitations on iron and sulfur can similarly be expected. Some users are sensitive to specific by-products for a variety of reasons. Eor example, alkaline compounds neutralize MTBE catalysts, and ethanol causes objectionable propionic acid formation in the carbonylation of methanol to acetic acid. Very high purity methanol is available from reagent vendors for small-scale electronic and pharmaceutical appHcations. [Pg.282]

Nickel—Copper. In the soHd state, nickel and copper form a continuous soHd solution. The nickel-rich, nickel—copper alloys are characterized by a good compromise of strength and ductihty and are resistant to corrosion and stress corrosion ia many environments, ia particular water and seawater, nonoxidizing acids, neutral and alkaline salts, and alkaUes. These alloys are weldable and are characterized by elevated and high temperature mechanical properties for certain appHcations. The copper content ia these alloys also easure improved thermal coaductivity for heat exchange. MONEL alloy 400 is a typical nickel-rich, nickel—copper alloy ia which the nickel content is ca 66 wt %. MONEL alloy K-500 is essentially alloy 400 with small additions of aluminum and titanium. Aging of alloy K-500 results in very fine y -precipitates and increased strength (see also Copper alloys). [Pg.6]

The selection of boiler-water treatment is also dependent on the type of cooling water. When cooling water reaches the boiler, various compounds precipitate before others. For instance, seawater contains considerable magnesium chloride. When the magnesium precipitates as the hydroxide, hydrochloric acid remains. In some lake waters, calcium carbonate is a significant impurity. When it reaches the boiler, carbon dioxide is driven off in the... [Pg.362]

Vanadium is resistant to attack by hydrochloric or dilute sulfuric acid and to alkali solutions. It is also quite resistant to corrosion by seawater but is reactive toward nitric, hydrofluoric, or concentrated sulfuric acids. Galvanic corrosion tests mn in simulated seawater indicate that vanadium is anodic with respect to stainless steel and copper but cathodic to aluminum and magnesium. Vanadium exhibits corrosion resistance to Hquid metals, eg, bismuth and low oxygen sodium. [Pg.382]

Chlorine. Chlorine, the material used to make PVC, is the 20th most common element on earth, found virtually everywhere, in rocks, oceans, plants, animals, and human bodies. It is also essential to human life. Eree chlorine is produced geothermally within the earth, and occasionally finds its way to the earth s surface in its elemental state. More usually, however, it reacts with water vapor to form hydrochloric acid. Hydrochloric acid reacts quickly with other elements and compounds, forming stable compounds (usually chloride) such as sodium chloride (common salt), magnesium chloride, and potassium chloride, all found in large quantities in seawater. [Pg.508]

In the blowing-out process, used when the source of bromine is seawater, air is used instead of steam to strip bromine from solution. At the pH of seawater the Hberated bromine hydroly2es to hypobromous acid and bromide. Bromide traps bromine as the tribromide ion and Htde bromine is released. Before stripping, enough sulfuric acid is added to the seawater to reduce the pH to 3—3.5. [Pg.285]

Seawater Distillation. The principal thermal processes used to recover drinking water from seawater include multistage flash distillation, multi-effect distillation, and vapor compression distillation. In these processes, seawater is heated, and the relatively pure distillate is collected. Scale deposits, usually calcium carbonate, magnesium hydroxide, or calcium sulfate, lessen efficiency of these units. Dispersants such as poly(maleic acid) (39,40) inhibit scale formation, or at least modify it to form an easily removed powder, thus maintaining cleaner, more efficient heat-transfer surfaces. [Pg.151]

Aromatic polyamide (aramid) membranes are a copolymer of 1-3 diaminobenzene with 1-3 and 1-4 benzenedicarboxylic acid chlorides. They are usually made into fine hollow fibers, 93 [Lm outer diameter by 43 [Lm inner diameter. Some flat sheet is made for spirals. These membranes are widely used for seawater desalination and to some extent for other process applications. The hollow fibers are capable of veiy high-pressure operation and have considerably greater hydrolytic resistance than does CA. Their packing density in hoUow-fiber form makes them veiy susceptible to colloidal fouling (a permeator 8 inches in diameter contains 3 M fibers), and they have essentially no resistance to chlorine. [Pg.2036]

This removal may also include diffusion of soluble U(VI) from seawater into the sediment via pore water. Uranium-organic matter complexes are also prevalent in the marine environment. Organically bound uranium was found to make up to 20% of the dissolved U concentration in the open ocean." ° Uranium may also be enriched in estuarine colloids and in suspended organic matter within the surface ocean. " Scott" and Maeda and Windom" have suggested the possibility that humic acids can efficiently scavenge uranium in low salinity regions of some estuaries. Finally, sedimentary organic matter can also efficiently complex or adsorb uranium and other radionuclides. [Pg.44]

In seawater, HCO3 ions lead to surface films and increased polarization. In aqueous solutions low in salt and with low loading of the anodes, less easily soluble basic zinc chloride [10] and other basic salts of low solubility are formed. In impure waters, phosphates can also be present and can form ZnNH4P04, which is very insoluble [11]. These compounds are only precipitated in a relatively narrow range around pH 7. In weakly acid media due to hydrolysis at the working anode, the solubility increases considerably and the anode remains active, particularly in flowing and salt-rich media. [Pg.187]

Electrochemical corrosion protection of the internal surfaces of reaction vessels, tanks, pipes and conveyor equipment in the chemical, power and petroleum industries is usually carried out in the presence of strongly corrosive media. The range stretches from drinking water through more or less contaminated river, brackish and seawater frequently used for cooling, to reactive solutions such as caustic soda, acids and salt solutions. [Pg.464]


See other pages where Seawater acidity is mentioned: [Pg.468]    [Pg.481]    [Pg.468]    [Pg.481]    [Pg.387]    [Pg.150]    [Pg.292]    [Pg.437]    [Pg.388]    [Pg.539]    [Pg.178]    [Pg.315]    [Pg.119]    [Pg.5]    [Pg.174]    [Pg.198]    [Pg.154]    [Pg.337]    [Pg.103]    [Pg.120]    [Pg.462]    [Pg.71]    [Pg.133]    [Pg.212]    [Pg.241]    [Pg.412]    [Pg.66]    [Pg.282]    [Pg.151]    [Pg.1419]    [Pg.2444]    [Pg.2451]    [Pg.2451]    [Pg.214]    [Pg.211]    [Pg.213]   
See also in sourсe #XX -- [ Pg.602 ]




SEARCH



Acids and bases in seawater

Boric acid in seawater

Organic acids in seawater

Seawater acid-based measurements

Seawater carbonic acid system

The Carbonic Acid System in Seawater

The pattern of amino acids in seawater

© 2024 chempedia.info