Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Seawater carbonic acid system

Another practical consideration when dealing with the seawater carbonic acid system is that in addition to carbonate alkalinity, H and OH , a number of other components can contribute to the total alkalinity (TA). The seawater constituent that is usually most important is boric acid. Under most conditions, boric acid contributes — 0.1 mmol alkalinity it is usually taken into consideration when making calculations. Nutrient compounds, such as ammonium, phosphate, and silica, whose concentrations in seawater are highly variable, can also influence alkalinity. They must be taken into account for very precise work. In anoxic pore waters a number of compounds, such as hydrogen sulfide and dissolved organic matter, can be significant contributors to alkalinity (e.g., see Berner et al, 1970). [Pg.3536]

The equations and methods given in this chapter can be used to calculate the distribution of carbonic acid system components and the saturation state of a solution with respect to a carbonate mineral under varying temperature, pressure, and composition. To illustrate the type of changes that occur, a calculation has been done for seawater, and the results summarized for nine different cases in Table 1.12. Case 1 is used as a reference typical of surface, subtropical, Atlantic seawater in equilibrium with the atmosphere. In all other cases the salinity and total... [Pg.35]

In this chapter, we introduced the reader to some basic principles of solution chemistry with emphasis on the C02-carbonate acid system. An array of equations necessary for making calculations in this system was developed, which emphasized the relationships between concentrations and activity and the bridging concept of activity coefficients. Because most carbonate sediments and rocks are initially deposited in the marine environment and are bathed by seawater or modified seawater solutions for some or much of their history, the carbonic acid system in seawater was discussed in more detail. An example calculation for seawater saturation state was provided to illustrate how such calculations are made, and to prepare the reader, in particular, for material in Chapter 4. We now investigate the relationships between solutions and sedimentary carbonate minerals in Chapters 2 and 3. [Pg.38]

The distribution of CO2 and the associated carbonic acid system species in the upper ocean (here loosely defined as waters above the thermocline and generally only a few hundred meters in depth) is primarily controlled by the exchange of CO2 across the air-sea interface, biological activity, and circulation of the ocean, mainly through vertical mixing processes. Other factors, such as the temperature and salinity of the water, can also contribute to variations by influencing the solubility of CO2 in seawater and the equilibrium constants of the carbonic acid system. [Pg.135]

It should be kept in mind that, in spite of these major variations in the CO2-carbonic acid system, virtually all surface seawater is supersaturated with respect to calcite and aragonite. However, variations in the composition of surface waters can have a major influence on the depth at which deep seawater becomes undersaturated with respect to these minerals. The CO2 content of the water is the primary factor controlling its initial saturation state. The productivity and temperature of surface seawater also play major roles, in determining the types and amounts of biogenic carbonates that are produced. Later it will be shown that there is a definite relation between the saturation state of deep seawater, the rain rate of biogenic material and the accumulation of calcium carbonate in deep sea sediments. [Pg.138]

As previously mentioned, the primary processes responsible for variations in the deep sea C02-carbonic acid system are oxidative degradation of organic matter, dissolution of calcium carbonate, the chemistry of source waters and oceanic circulation patterns. Temperature and salinity variations in deep seawaters are small and of secondary importance compared to the major variations in pressure with depth. Our primary interest is in how these processes influence the saturation state of seawater and, consequently, the accumulation of CaC03 in deep sea sediments. Variations of alkalinity in deep sea waters are relatively small and contribute little to differences in the saturation state of deep seawater. [Pg.140]

In these days following the plate tectonic revolution in natural science, there has been an increased propensity for specialization among scientists. This trend is apparent in the field of study of the geochemistry of sedimentary carbonates. Chemical oceanographers deal with the chemistry of the carbonic acid system in seawater. Some marine geologists and geochemists concern themselves with the relationship between factors controlling the lysocline and carbonate compensation... [Pg.716]

The calculation of the total ion molal carbonate ion concentration is more complex than for calcium because it is part of the carbonic acid system. The following reactions take place between CO and carbonic acid in seawater ... [Pg.504]

The chemistry of the carbonic acid system in seawater has been one of the more intensely studied areas of carbonate geochemistry. This is because a very precise and detailed knowledge of this system is necessary to understand carbon dioxide cycling and the deposition of carbonate sediments in the marine environment. A major concept applicable to problems dealing with the behavior of carbonic acid and carbonate minerals in seawater is the idea of a constant ionic medium. This concept is based on the observation that the salt in seawater has almost constant composition, i.e., the ratios of the major ions are the same from place to place in the ocean (Marcet s principle). Possible exceptions can include seawater in evaporative lagoons, pores of marine sediments, and near river mouths. Consequently, the major ion composition of seawater can generally be determined from its salinity. It has been possible, therefore, to develop equations in which the influence of seawater composition on carbonate equilibria is described simply in terms of salinity. [Pg.3535]

Millero, F. J. (1979) The Thermodynamics of the Carbonic Acid System in Seawater, Geochim. Cosmochim. Acta 43 1651-1661. [Pg.956]

Seawater is a weakly basic solution, with pH values typically between 8.0 and 8.3. This pH range is maintained through a carbonic acid buffer system similar to the one in blood (see Equation 17.10). [Pg.728]

Carbon dioxide and its carbonate minerals play an important role in environmental chemistry and atmospheric physics. In natural waters, atmospheric CO2 has a significant influence on pH, which varies from alkaline seawaters to acidic low mineral lakes, rivers, and soil water. In freshwaters and in oceans the equilibrium relationships between the carbon dioxide, the chemical and biological components, temperature, and the pH are complex functions. Chemical thermodynamics provide quantitative relationships between chemical energy, ionic reactions, solubilities, speciation, pH, and alkalinity. In natural systems these relationships are also complex functions of chemical and biological effects. [Pg.189]

In either case, the production of hydroxyl ions results in an increase in pH for the electrolyte adjacent to the metal surface. In other terms, an increase in OH is equivalent to a corresponding reduction in acidity or H+ ion concentration. This situation causes the production of a pH profile in the diffuse layer, where the equilibrium reactions can be quite different from those in the bulk seawater conditions. Temperature, relative electrolyte velocity, and electrolyte composition will all influence this pH profile. There is both analytical and experimental evidence that such a pH increase exists as a consequence of the application of a cathodic current. In seawater, pH is controlled by the carbon dioxide system described in Eqs. (2.18) through (2.20) ... [Pg.132]

E. L. Shock (1990) provides a different interpretation of these results he criticizes that the redox state of the reaction mixture was not checked in the Miller/Bada experiments. Shock also states that simple thermodynamic calculations show that the Miller/Bada theory does not stand up. To use terms like instability and decomposition is not correct when chemical compounds (here amino acids) are present in aqueous solution under extreme conditions and are aiming at a metastable equilibrium. Shock considers that oxidized and metastable carbon and nitrogen compounds are of greater importance in hydrothermal systems than are reduced compounds. In the interior of the Earth, CO2 and N2 are in stable redox equilibrium with substances such as amino acids and carboxylic acids, while reduced compounds such as CH4 and NH3 are not. The explanation lies in the oxidation state of the lithosphere. Shock considers the two mineral systems FMQ and PPM discussed above as particularly important for the system seawater/basalt rock. The FMQ system acts as a buffer in the oceanic crust. At depths of around 1.3 km, the PPM system probably becomes active, i.e., N2 and CO2 are the dominant species in stable equilibrium conditions at temperatures above 548 K. When the temperature of hydrothermal solutions falls (below about 548 K), they probably pass through a stability field in which CH4 and NII3 predominate. If kinetic factors block the achievement of equilibrium, metastable compounds such as alkanes, carboxylic acids, alkyl benzenes and amino acids are formed between 423 and 293 K. [Pg.191]

To date, a few methods have been proposed for direct determination of trace iodide in seawater. The first involved the use of neutron activation analysis (NAA) [86], where iodide in seawater was concentrated by strongly basic anion-exchange column, eluted by sodium nitrate, and precipitated as palladium iodide. The second involved the use of automated electrochemical procedures [90] iodide was electrochemically oxidised to iodine and was concentrated on a carbon wool electrode. After removal of interference ions, the iodine was eluted with ascorbic acid and was determined by a polished Ag3SI electrode. The third method involved the use of cathodic stripping square wave voltammetry [92] (See Sect. 2.16.3). Iodine reacts with mercury in a one-electron process, and the sensitivity is increased remarkably by the addition of Triton X. The three methods have detection limits of 0.7 (250 ml seawater), 0.1 (50 ml), and 0.02 pg/l (10 ml), respectively, and could be applied to almost all the samples. However, NAA is not generally employed. The second electrochemical method uses an automated system but is a special apparatus just for determination of iodide. The first and third methods are time-consuming. [Pg.81]

Further evidence for the addition of H2S to carbon-carbon double bonds very early in sediments, and further insights into reaction mechanisms, have been reported by Vairavamurthy and Mopper in 1987 and 1989 (109.110). They identified 3-mercaptopropionic acid (3-MPA) as a major thiol in anoxic intertidal marine sediment and demonstrated that the thiol formation could occur by the reaction of HS with acrylic acid in sediment water and seawater at ambient temperature The formation of 3-MPA was hypothesized to occur by a Michael addition mechanism whereby the nucleophile HS adds to the activated double bond in the a,/3-unsaturated carbonyl system ... [Pg.29]


See other pages where Seawater carbonic acid system is mentioned: [Pg.29]    [Pg.29]    [Pg.7]    [Pg.26]    [Pg.26]    [Pg.27]    [Pg.29]    [Pg.31]    [Pg.33]    [Pg.74]    [Pg.534]    [Pg.400]    [Pg.329]    [Pg.3132]    [Pg.146]    [Pg.141]    [Pg.435]    [Pg.58]    [Pg.212]    [Pg.241]    [Pg.413]    [Pg.190]    [Pg.357]    [Pg.499]    [Pg.502]    [Pg.756]    [Pg.894]    [Pg.124]    [Pg.410]    [Pg.225]    [Pg.121]    [Pg.245]    [Pg.118]   
See also in sourсe #XX -- [ Pg.26 , Pg.27 , Pg.28 , Pg.29 , Pg.30 , Pg.31 , Pg.32 , Pg.33 ]




SEARCH



Carbon system

Carbonate systems

Carbonic acid system

Seawater acidity

Seawater carbonate

The Carbonic Acid System in Seawater

© 2024 chempedia.info