Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Scanning electron microscopy evaluation

Yamashita, N. Tachibana, K. Ogawa, K. Scanning electron microscopy evaluation of the skin surface after ultrasound exposure. Anat. Rec. 1997, 247, 455-461. [Pg.3841]

McDonough, C. et al. 1993. Environmental scanning electron microscopy evaluation of tortilla chip microstmcture during deep-fat frying, J. Food Sci., 58, 199-203. [Pg.37]

Otlier fonns of microscopy have been used to evaluate nanocrystals. Scanning electron microscopy (SEM), while having lower resolution tlian TEM, is able to image nanoparticles on bulk surfaces, for direct visualization of... [Pg.2905]

Physical testing appHcations and methods for fibrous materials are reviewed in the Hterature (101—103) and are generally appHcable to polyester fibers. Microscopic analyses by optical or scanning electron microscopy are useful for evaluating fiber parameters including size, shape, uniformity, and surface characteristics. Computerized image analysis is often used to quantify and evaluate these parameters for quaUty control. [Pg.332]

Perhaps the most significant complication in the interpretation of nanoscale adhesion and mechanical properties measurements is the fact that the contact sizes are below the optical limit ( 1 t,im). Macroscopic adhesion studies and mechanical property measurements often rely on optical observations of the contact, and many of the contact mechanics models are formulated around direct measurement of the contact area or radius as a function of experimentally controlled parameters, such as load or displacement. In studies of colloids, scanning electron microscopy (SEM) has been used to view particle/surface contact sizes from the side to measure contact radius [3]. However, such a configuration is not easily employed in AFM and nanoindentation studies, and undesirable surface interactions from charging or contamination may arise. For adhesion studies (e.g. Johnson-Kendall-Roberts (JKR) [4] and probe-tack tests [5,6]), the probe/sample contact area is monitored as a function of load or displacement. This allows evaluation of load/area or even stress/strain response [7] as well as comparison to and development of contact mechanics theories. Area measurements are also important in traditional indentation experiments, where hardness is determined by measuring the residual contact area of the deformation optically [8J. For micro- and nanoscale studies, the dimensions of both the contact and residual deformation (if any) are below the optical limit. [Pg.194]

The interface properties can usually be independently measured by a number of spectroscopic and surface analysis techniques such as secondary ion mass spectroscopy (SIMS), X-ray photoelectron spectroscopy (XPS), specular neutron reflection (SNR), forward recoil spectroscopy (FRES), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), infrared (IR) and several other methods. Theoretical and computer simulation methods can also be used to evaluate H t). Thus, we assume for each interface that we have the ability to measure H t) at different times and that the function is well defined in terms of microscopic properties. [Pg.354]

Reactive compatibilization of engineering thermoplastic PET with PP through functionalization has been reported by Xanthos et al. [57]. Acrylic acid modified PP was used for compatibilization. Additives such as magnesium acetate and p-toluene sulfonic acid were evaluated as the catalyst for the potential interchange or esterification reaction that could occur in the melt. The blend characterization through scanning electron microscopy, IR spectroscopy, differential scanning calorimetry, and... [Pg.673]

Kirk, R.S. and J.W. Lewis. 1993. An evaluation of pollutant induced changes in the gills of rainbow trout using scanning electron microscopy. Environ. Technol. 14 577-585. [Pg.224]

J.S. Shah and A. Beckett, A preliminary evaluation of moist environment ambient temperature scanning electron microscopy (MEATSEM), Micron, 10 13-23, 1979. [Pg.634]

Three series of LaCoi. CuxOs, LaMni.xCuxOs, LaFei x(Cu, Pd)x03 perovskites prepared by reactive grinding were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), temperature programmed desorption (TPD) of O2, NO + O2, and CsHg in the absence or presence of H2O, Fourier transform infrared (FTIR) spectroscopy as well as activity evaluations without or with 10% steam in the feed. This research was carried out with the objective to investigate the water vapor effect on the catalytic behavior of the tested perovskites. An attempt to propose a steam deactivation mechanism and to correlate the water resistance of perovskites with their properties has also been done. [Pg.32]

Optical microscopy and scanning electron microscopy (SEM) were used to evaluate the drug incorporation and surface shape of the microspheres prepared under the various conditions. Particle size was determined using a Tiyoda microscope. Samples of microspheres (180-200) were dispersed on a slide and their diameter was then sized using suitable objectives. [Pg.105]

Kamiya et al. [83] evaluated particulate contamination in 199 samples of admixed and un-admixed parenteral nutrition solution bags from 10 hospitals in Japan. Seven samples were used as controls since they had not been mixed with ampoules or vials (un-admixed samples). Size and number of particles were measured using a particle counter, and the identification of elements was carried out by scanning electron microscopy coupled to energy dispersion spectroscopy. The authors collected the residual volume of the samples (10-60 mL) after their usage. The results are presented in Table 40. [Pg.523]

Triplicate aliquots were taken for particle size analysis and two of those aliquots were mixed for BET surface area analysis results are in Table III. The nine samples were individually sieved for size distribution. A chi-squared test was performed on each triplicate set in order to check the apparent efficiency of composite mixing. For all three composite samples, there was a 90 percent probability that each of the three replicates from each composite sample came from the same population. The A and C samples were combined and evaluated for surface area by nitrogen adsorption (BET). The B samples were then subjected to scanning electron microscopy (SEM) analysis. [Pg.98]

Evaluating the impact of processing conditions on film structure (by means of visual analysis using scanning electron microscopy)... [Pg.300]

When relationships between cells expressing particular surface antigens arc of interest, specimens are immunolabeled before preparation for scanning electron microscopy. This allows the three-dimensional evaluation of immunolabeling on the surface of the cells. [Pg.299]

Graft and block copolymers of cotton cellulose, in fiber, yam, and fabric forms, were prepared by free-radical initiated copolymerization reactions of vinyl monomers with cellulose. The properties of the fibrous cellulose-polyvinyl copolymers were evaluated by solubility, ESR, and infrared spectroscopy, light, electron, and scanning electron microscopy, fractional separation, thermal analysis, and physical properties, including textile properties. Generally, the textile properties of the fibrous copolymers were improved as compared with the properties of cotton products. [Pg.332]

The evaluation of coal mineral matter by the ashing technique can be taken further insofar as attempts can then be made to determine the individual metal constituents of the ash. On the occasion when the mineral matter has been separated from the coal successfully, it is then possible to apply any one of several techniques (such as x-ray diffraction, x-ray fluorescence, scanning electron microscopy and electron probe microanalysis) not only to investigate the major metallic elements in coal but also to investigate directly the nature (and amount) of the trace elements in the coal (Jenkins and Walker, 1978 Prather et al., 1979 Raymond and Gooley, 1979 Russell and Rimmer, 1979 Jones et al., 1992). Generally, no single method yields a complete analysis of the mineral matter in coal and it is often necessary to employ a combination of methods. [Pg.101]

Scanning electron microscopy with an energy-dispersive x-ray system accessory has been used to identify the composition and nature of minerals in coals and to determine the associations of minerals with each other. Examinations can be made on samples resulting from ashing techniques or whole coal. With this technique it is possible to identify the elemental components and deduce the mineral types present in coal samples. Computerized systems to evaluate scanning electron microscopy images have been developed and are useful in characterizing the minerals in coal mine dusts and in coal. [Pg.107]


See other pages where Scanning electron microscopy evaluation is mentioned: [Pg.269]    [Pg.299]    [Pg.42]    [Pg.124]    [Pg.312]    [Pg.56]    [Pg.224]    [Pg.600]    [Pg.153]    [Pg.402]    [Pg.23]    [Pg.26]    [Pg.242]    [Pg.213]    [Pg.20]    [Pg.72]    [Pg.399]    [Pg.475]    [Pg.1554]    [Pg.16]    [Pg.269]    [Pg.133]    [Pg.296]    [Pg.319]    [Pg.97]    [Pg.208]    [Pg.189]    [Pg.54]    [Pg.184]    [Pg.185]    [Pg.158]   
See also in sourсe #XX -- [ Pg.136 , Pg.136 ]




SEARCH



Evaluation tools scanning electron microscopy

Scanning electron microscopy

Scanning electronic microscopy

© 2024 chempedia.info