Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Free radical initiated copolymerization

Ethylene and tetrafluoroethylene are copolymerized in aqueous, nonaqueous, or mixed medium with free-radical initiators. The polymer is isolated and converted into extmded cubes, powders, and beads, or a dispersion. This family of products is manufactured by Du Pont, Hoechst, Daikin, Asahi Glass, and Ausimont and sold under the trade names of Tefzel, Hostaflon ET, Neoflon EP, Aflon COP, and Halon ET, respectively. [Pg.365]

Most commercial processes involve copolymerization of ethylene with the acid comonomer followed by partial neutralization, using appropriate metal compounds. The copolymerization step is best carried out in a weU-stirred autoclave with continuous feeds of all ingredients and the free-radical initiator, under substantially constant environment conditions (22—24). Owing to the relatively high reactivity of the acid comonomer, it is desirable to provide rapid end-over-end mixing, and the comonomer content of the feed is much lower than that of the copolymer product. Temperatures of 150—280°C and pressures well in excess of 100 MPa (1000 atm) are maintained. Modifications on the basic process described above have been described (25,26). When specific properties such as increased stiffness are required, nonrandom copolymers may be preferred. An additional comonomer, however, may be introduced to decrease crystallinity (10,27). [Pg.408]

The reactions of alkyl hydroperoxides with ferrous ion (eq. 11) generate alkoxy radicals. These free-radical initiator systems are used industrially for the emulsion polymerization and copolymerization of vinyl monomers, eg, butadiene—styrene. The use of hydroperoxides in the presence of transition-metal ions to synthesize a large variety of products has been reviewed (48,51). [Pg.104]

VEs can also copolymerize by free-radical initiation with a variety of comonomers. According to the and rvalues of 0.023 and —1.77 (isobutyl vinyl ether), VEs are expected to form ideal copolymers with monomers of similar and e values or alternating copolymers with monomers such as maleic anhydride (MAN) that have high values of opposite sign (Q = 0.23 e = 2.25). [Pg.518]

Random copolymers of vinyl chloride and other monomers are important commercially. Most of these materials are produced by suspension or emulsion polymerization using free-radical initiators. Important producers for vinyl chloride—vinyUdene chloride copolymers include Borden, Inc. and Dow. These copolymers are used in specialized coatings appHcations because of their enhanced solubiUty and as extender resins in plastisols where rapid fusion is required (72). Another important class of materials are the vinyl chloride—vinyl acetate copolymers. Principal producers include Borden Chemicals Plastics, B. F. Goodrich Chemical, and Union Carbide. The copolymerization of vinyl chloride with vinyl acetate yields a material with improved processabihty compared with vinyl chloride homopolymer. However, the physical and chemical properties of the copolymers are different from those of the homopolymer PVC. Generally, as the vinyl acetate content increases, the resin solubiUty in ketone and ester solvents and its susceptibiUty to chemical attack increase, the resin viscosity and heat distortion temperature decrease, and the tensile strength and flexibiUty increase slightly. [Pg.185]

A waterborne system for container coatings was developed based on a graft copolymerization of an advanced epoxy resin and an acryHc (52). The acryhc-vinyl monomers are grafted onto preformed epoxy resins in the presence of a free-radical initiator grafting occurs mainly at the methylene group of the aHphatic backbone on the epoxy resin. The polymeric product is a mixture of methacrylic acid—styrene copolymer, soHd epoxy resin, and graft copolymer of the unsaturated monomers onto the epoxy resin backbone. It is dispersible in water upon neutralization with an amine before cure with an amino—formaldehyde resin. [Pg.370]

Polystyrene (PS) is the fourth big-volume thermoplastic. Styrene can be polymerized alone or copolymerized with other monomers. It can be polymerized by free radical initiators or using coordination catalysts. Recent work using group 4 metallocene combined with methylalumi-noxane produce stereoregular polymer. When homogeneous titanium catalyst is used, the polymer was predominantly syndiotactic. The heterogeneous titanium catalyst gave predominantly the isotactic. Copolymers with butadiene in a ratio of approximately 1 3 produces SBR, the most important synthetic rubber. [Pg.334]

Styrene-butadiene rubber (SBR) is the most widely used synthetic rubber. It can be produced by the copolymerization of butadiene (= 75%) and styrene (=25%) using free radical initiators. A random copolymer is obtained. The micro structure of the polymer is 60-68% trans, 14-19% cis, and 17-21% 1,2-. Wet methods are normally used to characterize polybutadiene polymers and copolymers. Solid state NMR provides a more convenient way to determine the polymer micro structure. ... [Pg.353]

Currently, more SBR is produced by copolymerizing the two monomers with anionic or coordination catalysts. The formed copolymer has better mechanical properties and a narrower molecular weight distribution. A random copolymer with ordered sequence can also be made in solution using butyllithium, provided that the two monomers are charged slowly. Block copolymers of butadiene and styrene may be produced in solution using coordination or anionic catalysts. Butadiene polymerizes first until it is consumed, then styrene starts to polymerize. SBR produced by coordinaton catalysts has better tensile strength than that produced by free radical initiators. [Pg.353]

Two free radical-initiated polymerizations are used in turn as examples the homopolymerization of methyl methaK rylate and the copolymerization of styrene n-butyl methacrylate. [Pg.149]

A radical initiator based on the oxidation adduct of an alkyl-9-BBN (47) has been utilized to produce poly(methylmethacrylate) (48) (Fig. 31) from methylmethacrylate monomer by a living anionic polymerization route that does not require the mediation of a metal catalyst. The relatively broad molecular weight distribution (PDI = (MJM ) 2.5) compared with those in living anionic polymerization cases was attributed to the slow initiation of the polymerization.69 A similar radical polymerization route aided by 47 was utilized in the synthesis of functionalized syndiotactic polystyrene (PS) polymers by the copolymerization of styrene.70 The borane groups in the functionalized syndiotactic polystyrenes were transformed into free-radical initiators for the in situ free-radical graft polymerization to prepare s-PS-g-PMMA graft copolymers. [Pg.41]

In contrast, commercial processes for the copolymerization of ethylene with polar monomers such as acrylate and vinyl acetate still exclusively employ free radical processes [13]. The use of free radical initiators across the entire acrylic polymer... [Pg.161]

Initiation sites, in VDC polymer degradation, 25 714-715 Initiator bonds, breaking, 14 278 Initiators. See also Anionic initiators Cationic initiators Free-radical initiators alkoxide, 14 259 copolymerization, 14 252 difunctional and trifunctional, 14 252— 254... [Pg.474]

This industrial process remains essentially unchanged from the 1950s [25], Here, a free-radical initiator is added to the ethylene monomer at supercritical conditions (276 MPa and 200-300 °C). The polyethylene remains in the supercritical solution until the pressure is lowered to around 5 MPa, whereupon it precipitates. A range of other monomers can be copolymerized, including carbon monoxide to give polyketones, as shown in Scheme 10.19 [26],... [Pg.209]

Some pairs of very strongly electron-donor and electron-acceptor monomers, such as p-methoxystyrene and dimethyl cyanofumarate, undergo spontaneous alternating copolymerizations without any added free-radical initiator, although heat may be required [Hall and Padias, 1997, 2001]. Initiation involves reaction of the comonomer pair to form a diradical,... [Pg.499]

Fig. 5. Copolymerization of methyl methacrylate and styrene in tetrahydrofuran (O) and in N,N-dimethyl formamide ( ). Solid line represents copolymer composition produced by conventional free-radical initiators... Fig. 5. Copolymerization of methyl methacrylate and styrene in tetrahydrofuran (O) and in N,N-dimethyl formamide ( ). Solid line represents copolymer composition produced by conventional free-radical initiators...
Chloromethyl polystyrene can be converted to a free-radical initiator by reaction with 2,2,6,6-tetramethylpipcridinc-/V-oxyl (TEMPO). Radical polymerization of various substituted alkenes on this resin has been used to prepare new types of polystyrene-based supports [123]. Alternatively, cross-linked vinyl polystyrene can be copolymerized with functionalized norbornene derivatives by ruthenium-mediated ringopening metathesis polymerization [124],... [Pg.25]

In more conventional copolymerization, where both monomers are present at the start of reaction, standard analysis methods are available which were developed for free radical initiation. It is first necessary to enquire whether the techniques will be applicable to anionic systems containing long lived active species. Four propagation steps can be recognized in the copolymerization of two monomers Ml and M2 ... [Pg.95]

Copolymerizations initiated by lithium metal should give the same product as produced from lithium alkyls. Usually the radical ends produced by electron transfer initiation have so short a lifetime they can have no influence on the copolymerization. This is true for instance in the copolymerization of isoprene and styrene (50). The product is identical if initiated by lithium metal or by butyllithium. With the styrene-methylmethacrylate system, however, differences are observed (79,80,82). Whereas the butyllithium initiated copolymer contains no styrene at low conversions, the one initiated by lithium metal has a high styrene content if the reaction is carried out in bulk and a moderate one even in tetrahydrofuran. These facts led O Driscoll and Tobolsky (80) to suggest that initiation with lithium occurs by electron exchange and that in this case the radical ends are sufficiently long-lived to produce simultaneous radical and anionic reactions at opposite ends of the chain. Only in certain rather exceptional circumstances would the free radical reaction be of importance. Some of the conditions required have been discussed by Tobolsky and Hartley (111). The anionic reaction should be slow. This is normally true for lithium based catalysts in hydrocarbon solvents. No evidence of appreciable radical participation is observed for initiation by sodium and potassium. The monomers should show a fast radical reaction. If styrene is replaced by isoprene, no isoprene is found in the copolymer for isoprene polymerizes slowly by free radical initiation. Most important of all, initiation should be slow to produce a low steady concentration of radical-anions. An initiator which produces an almost instantaneous and complete electron transfer to monomer produces a high radical concentration which will ensure their rapid mutual termination. [Pg.99]

Usually, free-radical initiators such as azo compounds or peroxides are used to initiate the polymerization of acrylic monomers. Photochemical and radiation-initiated polymerizations are also well known. Methods of radical polymerization include bulk, solution, emulsion, suspension, graft copolymerization, radiation-induced, and ionic with emulsion being the most important. [Pg.18]


See other pages where Free radical initiated copolymerization is mentioned: [Pg.318]    [Pg.453]    [Pg.42]    [Pg.526]    [Pg.396]    [Pg.416]    [Pg.510]    [Pg.65]    [Pg.56]    [Pg.168]    [Pg.70]    [Pg.117]    [Pg.133]    [Pg.366]    [Pg.257]    [Pg.35]    [Pg.30]    [Pg.112]    [Pg.424]    [Pg.282]    [Pg.101]    [Pg.92]    [Pg.1105]    [Pg.1681]    [Pg.316]    [Pg.318]    [Pg.396]   
See also in sourсe #XX -- [ Pg.321 ]




SEARCH



Copolymerization, initiators

Free Radical Copolymerizations

Free radical initiators

Free-radical copolymerization

Graft copolymerization chemical free radical initiator

Initiating radical

Initiation free radical

Radical copolymerization

Radical initiators

Radical-initiation

© 2024 chempedia.info