Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adhesion macroscopic

This chapter and the two that follow are introduced at this time to illustrate some of the many extensive areas in which there are important applications of surface chemistry. Friction and lubrication as topics properly deserve mention in a textbook on surface chemistiy, partly because these subjects do involve surfaces directly and partly because many aspects of lubrication depend on the properties of surface films. The subject of adhesion is treated briefly in this chapter mainly because it, too, depends greatly on the behavior of surface films at a solid interface and also because friction and adhesion have some interrelations. Studies of the interaction between two solid surfaces, with or without an intervening liquid phase, have been stimulated in recent years by the development of equipment capable of the direct measurement of the forces between macroscopic bodies. [Pg.431]

Landman U, Luedtke W D and Ringer E M 1992 Moiecuiar dynamics simuiations of adhesive contact formation and friction Fundamentals of Friction Macroscopic and Microscopic Processes (NATO ASI Series E220) eds i LSinger and FI M Pollock (Dordrecht Kiuwer) pp 463-508... [Pg.2748]

Friction and Adhesion. The coefficient of friction p. is the constant of proportionality between the normal force P between two materials in contact and the perpendicular force F required to move one of the materials relative to the other. Macroscopic friction occurs from the contact of asperities on opposing surfaces as they sHde past each other. On the atomic level friction occurs from the formation of bonds between adjacent atoms as they sHde past one another. Friction coefficients are usually measured using a sliding pin on a disk arrangement. Friction coefficients for ceramic fibers in a matrix have been measured using fiber pushout tests (53). For various material combinations (43) ... [Pg.326]

In developing criteria for the ranking of adhesive formulations or adherend surface treatments or primers, it is necessary to distinguish between two different situations. In one case (contact adhesion), a true interface is believed to exist across which intermolecular forces are engaged, while in the other, an interphase is formed by diffusive interpenetration or interdigitation between the adhesive and the adherend (diffusion interphase adhesion). Even in the case of contact adhesion, more often than not, an mi vphase of macroscopic thickness forms on... [Pg.67]

The van der Waals and other non-covalent interactions are universally present in any adhesive bond, and the contribution of these forces is quantified in terms of two material properties, namely, the surface and interfacial energies. The surface and interfacial energies are macroscopic intrinsic material properties. The surface energy of a material, y, is the energy required to create a unit area of the surface of a material in a thermodynamically reversible manner. As per the definition of Dupre [14], the surface and interfacial properties determine the intrinsic or thermodynamic work of adhesion, W, of an interface. For two identical surfaces in contact ... [Pg.77]

In the JKR experiments, a macroscopic spherical cap of a soft, elastic material is in contact with a planar surface. In these experiments, the contact radius is measured as a function of the applied load (a versus P) using an optical microscope, and the interfacial adhesion (W) is determined using Eqs. 11 and 16. In their original work, Johnson et al. [6] measured a versus P between a rubber-rubber interface, and the interface between crosslinked silicone rubber sphere and poly(methyl methacrylate) flat. The apparatus used for these measurements was fairly simple. The contact radius was measured using a simple optical microscope. This type of measurement is particularly suitable for soft elastic materials. [Pg.94]

Once it is recognized that particles adhere to a substrate so strongly that cohesive fracture often results upon application of a detachment force and that the contact region is better describable as an interphase [ 18J rather than a sharp demarcation or interface, the concept of treating a particle as an entity that is totally distinct from the substrate vanishes. Rather, one begins to see the substrate-particle structure somewhat as a composite material. To paraphrase this concept, one could, in many instances, treat surface roughness (a.k.a. asperities) as particles appended to the surface of a substrate. These asperities control the adhesion between two macroscopic bodies. [Pg.143]

This expression relates the action-at-a-distance forces between atoms to the macroscopic deformations and dominated adhesion theoiy for the next several decades. The advent of quantum mechanics allowed the interatomic interactions giving rise to particle adhesion to be understood in greater depth. [Pg.147]

There are several distinctive features worth noting about the JKR equation. The first is in the limit of no adhesion (or, equivalently, large applied loads, as commonly occurs with macroscopic particles), Eq. 24 reduces to the Hertz equation... [Pg.150]

As is true for macroscopic adhesion and mechanical testing experiments, nanoscale measurements do not a priori sense the intrinsic properties of surfaces or adhesive junctions. Instead, the measurements reflect a combination of interfacial chemistry (surface energy, covalent bonding), mechanics (elastic modulus, Poisson s ratio), and contact geometry (probe shape, radius). Furthermore, the probe/sample interaction may not only consist of elastic deformations, but may also include energy dissipation at the surface and/or in the bulk of the sample (or even within the measurement apparatus). Study of rate-dependent adhesion and mechanical properties is possible with both nanoindentation and... [Pg.193]

Perhaps the most significant complication in the interpretation of nanoscale adhesion and mechanical properties measurements is the fact that the contact sizes are below the optical limit ( 1 t,im). Macroscopic adhesion studies and mechanical property measurements often rely on optical observations of the contact, and many of the contact mechanics models are formulated around direct measurement of the contact area or radius as a function of experimentally controlled parameters, such as load or displacement. In studies of colloids, scanning electron microscopy (SEM) has been used to view particle/surface contact sizes from the side to measure contact radius [3]. However, such a configuration is not easily employed in AFM and nanoindentation studies, and undesirable surface interactions from charging or contamination may arise. For adhesion studies (e.g. Johnson-Kendall-Roberts (JKR) [4] and probe-tack tests [5,6]), the probe/sample contact area is monitored as a function of load or displacement. This allows evaluation of load/area or even stress/strain response [7] as well as comparison to and development of contact mechanics theories. Area measurements are also important in traditional indentation experiments, where hardness is determined by measuring the residual contact area of the deformation optically [8J. For micro- and nanoscale studies, the dimensions of both the contact and residual deformation (if any) are below the optical limit. [Pg.194]

Zhang Newby, B.-M., Chaudhury, M.K. and Brown, H.R., Macroscopic evidence of the effect of interfacial slippage on adhesion. Science, 269, 1407-1409 (1995). [Pg.242]

Although the diffusion mechanism can be seen as mechanical but occurring at molecular dimensions, van der Waals intermolecular interactions and conformational entropic energy provide an additional mechanism that increases adhesion [62]. It is interesting to note the analogy that exists between this mechanism at the molecular level with the adherence, adhesion and viscoelastic deformations concept applied for a macroscopic adhesive. [Pg.696]

Dynamic Analyses of Adhesion at Micro and Macroscopic Scales... [Pg.169]

Dipole-dipole forces are weaker than electrostatic forces, but they can represent a substantial fraction of monopole forces. They have important effects because they are predominantly positive. Therefore, they add up, and even though they decay rapidly with the distance between molecules, their sums remain significant, leading to measurable adhesive forces between macroscopic solid bodies. [Pg.157]

One would like to see more experiments carried out with mixed dispersions in the presence of polymers (leading to selective flocculation ), and on the interaction of particles with macroscopic surfaces. Both of these areas have long-term implications in biological studies. (Selective cell ahesion adhesion of microorganisms to surfaces.)... [Pg.20]

Additionally, some properties unique to both systems may result. The majority of homopolymer blends are immiscible with one another and often experience poor interfacial adhesion between the separate phases. Since block copolymers are covalently linked together, macroscopic incompatibility at the interface is minimized. The macroscopic incompatibility of a two-polymer blend may be eliminated by the addition of a block copolymer derived from the two systems. Hence, copolymers can be used to strengthen blends of immiscible polymers by serving as emulsifiers (7-9). [Pg.159]

At the mesoscopic scale, interactions between molecular components in membranes and catalyst layers control the self-organization into nanophase-segregated media, structural correlations, and adhesion properties of phase domains. Such complex processes can be studied by various theoretical tools and simulation techniques (e.g., by coarse-grained molecular dynamics simulations). Complex morphologies of the emerging media can be related to effective physicochemical properties that characterize transport and reaction at the macroscopic scale, using concepts from the theory of random heterogeneous media and percolation theory. [Pg.352]


See other pages where Adhesion macroscopic is mentioned: [Pg.325]    [Pg.325]    [Pg.3]    [Pg.209]    [Pg.18]    [Pg.143]    [Pg.164]    [Pg.318]    [Pg.329]    [Pg.344]    [Pg.368]    [Pg.1097]    [Pg.667]    [Pg.232]    [Pg.168]    [Pg.170]    [Pg.178]    [Pg.182]    [Pg.178]    [Pg.564]    [Pg.2]    [Pg.17]    [Pg.33]    [Pg.85]    [Pg.75]    [Pg.155]    [Pg.391]    [Pg.241]    [Pg.371]    [Pg.128]    [Pg.96]    [Pg.97]    [Pg.200]    [Pg.372]   
See also in sourсe #XX -- [ Pg.21 ]




SEARCH



© 2024 chempedia.info