Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Scale separation

Column Si. Size-exclusion chromatography columns are generally the largest column on a process scale. Separation is based strictly on diffusion rates of the molecules inside the gel particles. No proteins or other solutes are adsorbed or otherwise retained owing to adsorption, thus, significant dilution of the sample of volume can occur, particularly for small sample volumes. The volumetric capacity of this type of chromatography is determined by the concentration of the proteins for a given volume of the feed placed on the column. [Pg.50]

A surprisiagly large number of important iadustrial-scale separations can be accompHshed with the relatively small number of zeoHtes that are commercially available. The discovery, characterization, and commercial availabiHty of new zeoHtes and molecular sieves are likely to multiply the number of potential solutions to separation problems. A wider variety of pore diameters, pore geometries, and hydrophobicity ia new zeoHtes and molecular sieves as weU as more precise control of composition and crystallinity ia existing zeoHtes will help to broaden the appHcations for adsorptive separations and likely lead to improvements ia separations that are currently ia commercial practice. [Pg.303]

J. A. Johnson and A. R. Oroskar, "Sorbex Technology for Industrial Scale Separation," iu H. G. Karge and J. Weitkamp, eds.. Zeolites as Catalysts,... [Pg.304]

Hafnium Carbide. The need of pure zirconium [7440-67-7] for nuclear reactors prompted the large-scale separation of hafnium [7440-58-6] from zirconium. This in turn made sufficient quantities of hafnium dioxide [12055-23-17, Hf02, or Hf metal sponge available for production of HfC for use in cemented carbides (see Hafniumand hafnium compounds). [Pg.452]

There are three distinct modes of electrophoresis zone electrophoresis, isoelectric focusing, and isotachophoresis. These three methods may be used alone or in combination to separate molecules on both an analytical (p.L of a mixture separated) and preparative (mL of a mixture separated) scale. Separations in these three modes are based on different physical properties of the molecules in the mixture, making at least three different analyses possible on the same mixture. [Pg.178]

Application of rotating coiled columns has become attractive for preparative-scale separations of various substances from different samples (natural products, food and environmental samples) due to advantages over traditional liquid-liquid extraction methods and other chromatographic techniques. The studies mainly made during the last fifteen years have shown that using rotating coiled columns is also promising for analytical chemistry, particularly for the extraction, separation and pre-concentration of substances to be determined (analytes) before their on-line or off-line analysis by different determination techniques. [Pg.247]

For production-scale separations, column diameters up to 30 cm are recommended. Usually the length of the column is in the range of 600-1200 mm for smaller column diameters (less than 50 mm). Columns with larger diameters can be packed up to 900 mm. [Pg.225]

P. D. Grossman, J. C. Colburn, H. H. Lauer, R. G. Nielsen, R. M. Riggin, G. S. Sittampalam and E. C. Rickard, Application of free-solution capillary electrophoresis to the analytical scale separation of proteins and peptides . Anal. Chem. 61 1186-1194 (1989). [Pg.213]

Supercritical fluid chromatography (SFC) refers to the use of mobile phases at temperatures and pressures above the critical point (supercritical) or just below (sub-critical). SFC shows several features that can be advantageous for its application to large-scale separations [132-135]. One of the most interesting properties of this technique is the low viscosity of the solvents used that, combined with high diffusion coefficients for solutes, leads to a higher efficiency and a shorter analysis time than in HPLC. [Pg.12]

Although some applications for preparative-scale separations have already been reported [132] and the first commercial systems are being developed [137, 138], examples in the field of the resolution of enantiomers are still rare. The first preparative chiral separation published was performed with a CSP derived from (S -N-(3,5-dinitrobenzoyl)tyrosine covalently bonded to y-mercaptopropyl silica gel [21]. A productivity of 510 mg/h with an enantiomeric excess higher than 95% was achieved for 6 (Fig. 1-3). [Pg.12]

Liquid-liquid extraction is a basic process already applied as a large-scale method. Usually, it does not require highly sophisticated devices, being very attractive for the preparative-scale separation of enantiomers. In this case, a chiral selector must be added to one of the liquid phases. This principle is common to some of the separation techniques described previously, such as CCC, CPC or supported-liquid membranes. In all of these, partition of the enantiomers of a mixture takes place thanks to their different affinity for the chiral additive in a given system of solvents. [Pg.15]

In general, high selectivities can be obtained in liquid membrane systems. However, one disadvantage of this technique is that the enantiomer ratio in the permeate decreases rapidly when the feed stream is depleted in one enantiomer. Racemization of the feed would be an approach to tackle this problem or, alternatively, using a system containing the two opposite selectors, so that the feed stream remains virtually racemic [21]. Another potential drawback of supported enantioselective liquid membranes is the application on an industrial scale. Often a complex multistage process is required in order to achieve the desired purity of the product. This leads to a relatively complicated flow scheme and expensive process equipment for large-scale separations. [Pg.132]

Resin consumption is low because of the highly efficient use of the capacity of the resin for the enantiomer during each cycle, as well as the material stability of the resin. The above benefits of the ChiraLig M technology result in improved economics for the large-scale separation. [Pg.211]

The interests of SMB for performing large-scale separations of enantiopure drugs has been recognized (very short development time, extremely high probability of success, and attractive purification cost) [68]. Several pharmaceutical and fine chemical companies have already developed SMB processes. However, because of strong confidentiality constraints, public information is limited, and some of the major announcements are summarized below ... [Pg.281]

CE is generally more suited to analytical separations than to preparative-scale separations. However, given the success of CE methods for chiral separations, it seems reasonable to explore the utility of preparative electrophoretic methods to chiral separations. Thus, the purpose of this work is to highlight some of the developments in the application of preparative electrophoresis to chiral separations. Both batch and continuous processes will be examined. [Pg.288]

Ultimately, however, it should be noted that these examples of classical gel electrophoretic separations are batch processes and therefore limited in sample throughput. To achieve true preparative-scale separations by electrophoresis, it becomes necessary to convert to continuous processes. [Pg.292]

Packed column SFC has also been applied to preparative-scale separations [42], In comparison to preparative LC, SFC offers reduced solvent consumption and easier product recovery [43]. Whatley [44] described the preparative-scale resolution of potassium channel blockers. Increased resolution in SFC improved peak symmetry and allowed higher sample throughput when compared to LC. The enhanced resolution obtained in SFC also increases the enantiomeric purity of the fractions collected. Currently, the major obstacle to widespread use of preparative SFC has been the cost and complexity of the instrumentation. [Pg.306]

A new brush-type CSP, the Whelk-0 1, was used by Blum et al. for the analytical and preparative-scale separations of racemic pharmaceutical compounds, including verapamil and ketoprofen. A comparison of LC and SFC revealed the superiority of SFC in terms of efficiency and speed of method development [50]. The Whelk-0 1 selector and its homologues have also been incorporated into polysiloxanes. The resulting polymers were coated on silica and thermally immobilized. Higher efficiencies were observed when these CSPs were used with sub- and supercritical fluids as eluents, and a greater number of compounds were resolved in SFC compared to LC. Compounds such as flurbiprofen, warfarin, and benzoin were enantioresolved with a modified CO, eluent [37]. [Pg.307]

Subsequently, it was appreciated that there are two major difficulties with this model potential. One was the observation that the width of the attractive well varied with the molecular orientations which is unrealistic [12]. Equally unrealistic is the prediction that the well depth depends only on the relative orientation of the two particles and not on their orientation with respect to the intermolecular vector (see Eq. 4). These difficulties were addressed by several groups [13] and culminated in the proposals by Gay and Berne [8] which are essentially ad hoc in character. To remove the angular variation of the width of the attractive well they changed the functional form from a dependence on the scaled distance (r/cr) (see Eq. 1) to a shifted and scaled separation R where... [Pg.69]


See other pages where Scale separation is mentioned: [Pg.1060]    [Pg.50]    [Pg.55]    [Pg.64]    [Pg.69]    [Pg.544]    [Pg.8]    [Pg.431]    [Pg.467]    [Pg.221]    [Pg.222]    [Pg.38]    [Pg.55]    [Pg.112]    [Pg.138]    [Pg.147]    [Pg.151]    [Pg.200]    [Pg.203]    [Pg.207]    [Pg.209]    [Pg.220]    [Pg.981]    [Pg.16]    [Pg.486]    [Pg.169]    [Pg.511]    [Pg.101]    [Pg.114]    [Pg.283]    [Pg.228]    [Pg.106]   
See also in sourсe #XX -- [ Pg.140 ]




SEARCH



Analytical-scale HPLC separations, residual

Approximate lumping in systems with time-scale separation

Approximate non-linear lumping in systems with time-scale separation

Chromatographic separations, basics scaling

Dynamic scaling polymer blend phase separation

Electrokinetic separations electrophoresis, scale

Electronic charges separate scaling

Enantiomers, liquid chromatographic preparative-scale separation

Enantiopure drugs, large-scale separations

Hydrogen separation membranes scale

Indirect Enantiomer Separation on a Preparative Scale

Industrial-scale enantiomer separation

Laboratory scale isotope separation

Langevin equation time-scale separation

Large Scale Separations and Energy Demands

Large scale isotope separation

Large scale separations

Large-scale chiral separation

Large-scale gas separation

Linear lumping in systems with time-scale separation

Macro-scale phase separation morphology

Nano-scale separation

Nanometer scale phase separation

Phase separation: intermediate-scale

Pilot-scale Separations

Preparative scale separations

Preparative-scale HPLC separations

Preparative-scale LC separation

Scaled Hamiltonians separate scalings

Scaled-down separation

Scaling relations, polymer blend phase separation

Scaling up of chromatographic separations

Separation and identification of Group IIB cations on the semimicro scale

Separation and identification of Group IIIA cations on the semimicro scale

Separation and identification of Group IIIB cations on the semimicro scale

Separation and identification of Group IV cations on the semimicro scale

Separation laboratory scale

Separation of cations into groups on the semimicro scale

Separation of time scales

Separation process scale

Separation production scale

Separation-shifted scaling

Solid/liquid separation scale

Subsystems separate scalings

Time scale separation

Widely separated time scales

© 2024 chempedia.info