Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electronic charges separate scalings

Immediately upon excitation of an IPCT band with a fs laser at 400 nm, transient absorption was observed for both salts in solutions with a peak at about 600 nm, characteristic of 4,4/-bipyridinium radical cations. Figure 20 shows the transient absorption spectra of PV2+(I )2 in methanol solution. A marked increase in the absorbance of the 4,4/-bipyridinium radical cations took place within 1 ps after excitation. 4,4/-Bipyridinium radical cations were thus formed in a fs time scale by the photoinduced electron transfer from a donor I- to an acceptor 4,4/-bipyridinium upon IPCT excitation [48], The time profiles of transient absorption at 600 nm are shown in Fig. 21 for (a) PV2+(I )2 in a film cast from DME and (b) PV2+(TFPB )2 in DME solutions. Both of them showed a very rapid rise in about 0.3 ps, which was almost the same as the time resolution of our fs Ti sapphire laser measurement system with a regenerative amplifier. Similar extremely rapid formation of 4,4/-bipyridinium radical cations was observed for PV2+(I )2 salts in methanol and dimethylsulfoxide solutions upon IPCT excitation, respectively. These results demonstrated that the charge separated 4,4/-bipyridinium radical cations were formed directly upon IPCT excitation because of the nature of IPCT absorption bands (that the electrons correlated with the IPCT band are transferred partially at the ground state and completely at the excited state). Such a situation is very different from usual photochromism which is caused by various changes of chemical bonds mainly via the excited singlet state. No transient absorption was observed for PV2+(I )2... [Pg.409]

While such a device has yet to be constructed, Debreczeny and co-workers have synthesized and studied a linear D-A, -A2 triad suitable for implementation in such a device.11641 In this system, compound 6, a 4-aminonaphthalene monoimide (AN I) electron donor is excited selectively with 400 nm laser pulses. Electron transfer from the excited state of ANI to Ai, naphthalene-1,8 4,5-diimide (NI), occurs across a 2,5-dimethylphenyl bridge with x = 420 ps and a quantum yield of 0.95. The dynamics of charge separation and recombination in these systems have been well characterized.11651 Spontaneous charge shift to A2, pyromellitimide (PI), is thermodynamically uphill and does not occur. The mechanism for switching makes use of the large absorption cross-section of the NI- anion radical at 480 nm, (e = 28,300). A second laser pulse at 480 nm can selectively excite this chromophore and provide the necessary energy to move the electron from NI- to PI. These systems do not rely on electrochemical oxidation-reduction reactions at an electrode. Thus, switching occurs on a subpicosecond time scale. [Pg.11]

Photoinduced electron injection is by no means a new development. This process has already been applied in areas such as silver halide photography. In this discussion, only sensitized TiC>2 surfaces will be considered. Many experiments have shown that the charge injection into the semiconductor surface is very fast. In order to study these processes, fast spectroscopic techniques are preferred. Whether or not charge injection takes place can be studied conveniently on the nanosecond time-scale by using transient absorption spectroscopy. However, to address the injection process directly, experiments are carried out on the femtosecond time-scale, while recombination and charge separation require the nanosecond to microsecond range. [Pg.282]

The fundamentals of electron transfer from an adsorbed molecule to a solid substrate has been considered by Willig and co-workers [9]. In this study, the photoinduced electron injection from the excited state of [Ru(dcbpy)2(NCS)2] into nanocrystalline TiC>2 was investigated both in high vacuum and in methanol containing 0.3 M LiCl. The central issue addressed in this investigation was to determine the time-scale on which the photoinduced electron injection from the molecular component to the solid substrate occurs. Transient absorption spectroscopy was used to follow this charge separation. The measurement was based on... [Pg.282]


See other pages where Electronic charges separate scalings is mentioned: [Pg.73]    [Pg.2456]    [Pg.2500]    [Pg.2972]    [Pg.707]    [Pg.415]    [Pg.707]    [Pg.721]    [Pg.225]    [Pg.747]    [Pg.166]    [Pg.196]    [Pg.217]    [Pg.229]    [Pg.236]    [Pg.57]    [Pg.190]    [Pg.25]    [Pg.229]    [Pg.538]    [Pg.188]    [Pg.12]    [Pg.714]    [Pg.130]    [Pg.51]    [Pg.364]    [Pg.140]    [Pg.327]    [Pg.183]    [Pg.191]    [Pg.207]    [Pg.163]    [Pg.137]    [Pg.165]    [Pg.147]    [Pg.150]    [Pg.161]    [Pg.276]    [Pg.175]    [Pg.351]    [Pg.354]    [Pg.299]    [Pg.88]    [Pg.364]   
See also in sourсe #XX -- [ Pg.254 , Pg.255 , Pg.256 , Pg.257 , Pg.258 , Pg.259 , Pg.260 , Pg.261 , Pg.262 , Pg.263 , Pg.264 , Pg.265 ]




SEARCH



Charge separation

Charge separators

Charges, separated

Electron charge-separation

Electronic charges

Electronics separations

Scale, separation

Scaling charges

© 2024 chempedia.info