Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ruthenium without

Ruthenium has always been considered as one of the most active catalysts for several reactions of commercial and environmental importance. In early seventies, ruthenium was studied for its possible application as a de-NOx catalyst for automobiles. Its volatile nature in oxide form was soon realized and efforts were directed to stabilize ruthenium, without much affecting its catalytic properties. Attempts were also made towards synthesis of mthenium based perovskite t3 e and other mixed oxide compositions, as the incorporation of ruthenium in perovskite structure can substantially improve its thermal stability... [Pg.826]

By monitoring the intensity of the carbonyl absorption it was observed that oxidation of methyl 4,6-0-benzylidene-2-deoxy-a-D-Zt/ ro-hexopyrano-side with chromium trioxide-pyridine at room temperature gave initially the hexopyranosid-3-ulose (2) in low concentration, but attempts to increase this yield resulted in elimination of methanol to give compound 3. However, when methyl 4,6-0-benzylidene-2-deoxy-a-D-Zt/ ro-hexo-pyranoside is oxidized by ruthenium tetroxide in either carbon tetrachloride or methylene dichloride it affords compound 2 without concomitant elimination. When compound 2 was heated for 30 minutes in pyridine which was 0.1 M in either perchloric acid or hydrochloric acid it afforded compound 3, but in pyridine alone it was recoverable unchanged (2). Another example of this type of elimination, leading to the introduction of unsaturation into a glycopyranoid ring, was observed... [Pg.151]

The goal of Haber s research was to find a catalyst to synthesize ammonia at a reasonable rate without going to very high temperatures. These days two different catalysts are used. One consists of a mixture of iron, potassium oxide. K20, and aluminum oxide. Al203. The other, which uses finely divided ruthenium, Ru. metal on a graphite surface, is less susceptible to poisoning by impurities. Reaction takes place at 450°C and a pressure of 200 to 600 atm. The ammonia... [Pg.342]

These oxidants have been used rarely. The kinetics of periodate oxidation of sulphoxides have been studied119,124. In an acid medium the reaction proceeds without catalysis but in alkali a catalyst such as an osmium(VIII) or ruthenium(III) salt is required124. Iodosylbenzene derivatives have also been used for the oxidation of sulphoxides to the sulphone level94,125 (equation 39). In order to use this reaction for the synthesis of sulphones, a ruthenium(III) complex should be used as a catalyst thus quantitative yields are obtained at room temperature in a few minutes. However, column chromatography is required to separate the sulphone from the other products of the reaction. [Pg.982]

Transition-metal-based Lewis acids such as molybdenum and tungsten nitro-syl complexes have been found to be active catalysts [49]. The ruthenium-based catalyst 50 (Figure 3.6) is very effective for cycloadditions with aldehyde- and ketone-bearing dienophiles but is ineffective for a,)S-unsaturated esters [50]. It can be handled without special precautions since it is stable in air, does not require dry solvents and does not cause polymerization of the substrates. Nitromethane was the most convenient organic solvent the reaction can also be carried out in water. [Pg.114]

The lipophilicity of the TRISPHAT anion 8 also confers to its salts an affinity for organic solvents and, once dissolved, the ion pairs do not partition in aqueous layers. This rather uncommon property was used by Lacour s group to develop a simple and practical resolution procedure of chiral cationic coordination complexes by asymmetric extraction [134,135]. Selectivity ratios as high as 35 1 were measured for the enantiomers of ruthenium(II) trisdiimine complexes, demonstrating without ambiguity the efficiency of the resolution procedure [134]. [Pg.36]

ESR spectra were recorded on a JEOL JES-RE2X spectrometer. About 250 mg of ruthenium-free titanate samples was subjected to heat treatment either in vacuum at 573 K or in a hydrogen atmosphere at 973 K. For measurements of ESR spectra, 30 Torr of O2 or N2O was introduced at room temperature and then cooled to 77 K without evacuation. The spectra were obtained in the dark and under UV irradiation with a 500 W low pressure mercury lamp. [Pg.144]

The development of highly efficient methanol fnel cells depends on a nnmber of scientific aspects (1) the development of more highly active catalysts for methanol oxidation at temperatnres not over 60 to 70°C (desirable in cells without ruthenium, which is in short supply) (2) the development of selective catalysts for the oxygen electrode (i.e., of catalysts insensitive to the presence of methanol) and (3) the development of new membrane materials having a lower methanol permeability. [Pg.367]

This type of catalyst is not limited to nickel other examples are Raney-cobalt, Raney-copper and Raney-ruthenium. When dry, these catalysts are pyrophoric upon contact with air. Usually they are stored under water, which enables their use without risk. The pyrophoric character is due to the fact that the metal is highly dispersed, so in contact with oxygen fast oxidation takes place. Moreover, the metal contains hydrogen atoms and this adds to the pyrophoric nature. Besides the combustion of the metal also ignition of organic vapours present in the atmosphere can occur. Before start of the reaction it is a standard procedure to replace the water by organic solvents but care should be taken to exclude oxygen. Often alcohol is used. The water is decanted and the wet catalyst is washed repeatedly with alcohol. After several washes with absolute alcohol the last traces of water are removed. [Pg.70]

Olefin-metathesis is a useful tool for the formation of unsaturated C-C bonds in organic synthesis.186 The most widely used catalysts for olefin metathesis include alkoxyl imido molybdenum complex (Schrock catalyst)187 and benzylidene ruthenium complex (Grubbs catalyst).188 The former is air- and moisture-sensitive and has some other drawbacks such as intolerance to many functional groups and impurities the latter has increased tolerance to water and many reactions have been used in aqueous solution without any loss of catalytic efficiency. [Pg.79]

The use of chiral ruthenium catalysts can hydrogenate ketones asymmetrically in water. The introduction of surfactants into a water-soluble Ru(II)-catalyzed asymmetric transfer hydrogenation of ketones led to an increase of the catalytic activity and reusability compared to the catalytic systems without surfactants.8 Water-soluble chiral ruthenium complexes with a (i-cyclodextrin unit can catalyze the reduction of aliphatic ketones with high enantiomeric excess and in good-to-excellent yields in the presence of sodium formate (Eq. 8.3).9 The high level of enantioselectivity observed was attributed to the preorganization of the substrates in the hydrophobic cavity of (t-cyclodextrin. [Pg.217]

Partial hydrolysis of nitrile gives amides. Conventionally, such reactions occur under strongly basic or acidic conditions.42 A broad range of amides are accessed in excellent yields by hydration of the corresponding nitriles in water and in the presence of the supported ruthenium catalyst Ru(0H)x/A1203 (Eq. 9.19).43 The conversion of acrylonitrile into acrylamide has been achieved in a quantitative yield with better than 99% selectivity. The catalyst was reused without loss of catalytic activity and selectivity. This conversion has important industrial applications. [Pg.309]

The nitrogen on ruthenium work is consistent with the observation made on the H/Cl/Au Eley-Rideal chemistry and, taken together, the implications of these two pieces of work are quite profound, suggesting that an accurate theory of surface reactions cannot be constructed without accounting for strong coupling between the reaction coordinate and the metals electron... [Pg.395]

For Cl2 or 02 evolution the stability of ruthenium based electrodes is not sufficient on a technical scale. Therefore the possibility of stabilizing the ruthenium oxide without losing too much of its outstanding catalytic performance was investigated by many groups. For the Cl2 process, mixed oxides with valve metals like Ti or Ta were found to exhibit enhanced stability (see Section 3.1), while in the case of the 02 evolution process in solid polymer electrolyte cells for H2 production a mixed Ru/Ir oxide proved to be the best candidate [68, 80]. [Pg.105]

The ruthenium-catalyzed isotope exchange of boron atoms in decaborane is remarkable because several bonds are selectively broken and formed with a nanoscale catalyst without altering the structure of the decaborane. Highly enriched [10B] decaborane can be obtained by repeated treatment (six times) of decaborane with 10B2H6 in presence of Ru(0) NPs in ILs (entry 3, Table 1.5 Scheme 1.5), where the catalyst was recycled three times in batch experiments without significant activity loss [107]. [Pg.24]

By contrast, much of the work performed using ruthenium-based catalysts has employed well-defined complexes. These have mostly been studied in the ATRP of MMA, and include complexes (158)-(165).400-405 Recent studies with (158) have shown the importance of amine additives which afford faster, more controlled polymerization.406 A fast polymerization has also been reported with a dimethylaminoindenyl analog of (161).407 The Grubbs-type metathesis initiator (165) polymerizes MMA without the need for an organic initiator, and may therefore be used to prepare block copolymers of MMA and 1,5-cyclooctadiene.405 Hydrogenation of this product yields PE-b-PMMA. N-heterocyclic carbene analogs of (164) have also been used to catalyze the free radical polymerization of both MMA and styrene.408... [Pg.21]

The feasibility of carbon-supported nickel-based catalysts as the alternative to the platinum catalyst is studied in this chapter. Carbon-supported nickel (Ni/C, 10 wt-metal% [12]), ruthenium (Ru/C, 10 wt-metal% [12]), and nickel-ruthenium composite (Ni-Ru/C, 10 wt-metal%, mixed molar ratio of Ni/Ru 0.25,1,4, 8, and 16 [12]) catalysts were prepared similarly by the impregnation method. Granular powders of the activated carbon without the base pretreatment were stirred with the NiCl2, RuC13, and NiCl2-RuCl3 aqueous solutions at room temperature for 24 h, respectively. Reduction and washing were carried out in the same way as done for the Pt/C catalyst. Finally, these nickel-based catalysts were evacuated at 70°C for 10 h. [Pg.452]

For ruthenium catalysts without shift activity, the stoichiometric requirement for syngas conversion is two moles of per mole of CO, according to Equation (I). However, the H2/C0 usage ratio can be less than 2 when the catalyst has shift activity (Equation II). [Pg.305]

The ruthenium-, rhodium-, and palladium-catalyzed C-C bond formations involving C-H activation have been reviewed from the reaction types and mechanistic point of view.135-138 The activation of aromatic carbonyl compounds by transition metal catalyst undergoes ortho-alkylation through the carbometallation of unsaturated partner. This method offers an elegant way to activate C-H bond as a nucleophilic partner. The rhodium catalyst 112 has been used for the alkylation of benzophenone by vinyltrimethylsilane, affording the monoalkylated product 110 in 88% yield (Scheme 34). The formation of the dialkylated product is also observed in some cases. The ruthenium catalyst 113 has shown efficiency for such alkylation reactions, and n-methylacetophenone is transformed to the ortho-disubstituted acetophenone 111 in 97% yield without over-alkylation at the methyl substituent. [Pg.315]


See other pages where Ruthenium without is mentioned: [Pg.380]    [Pg.380]    [Pg.68]    [Pg.174]    [Pg.199]    [Pg.55]    [Pg.118]    [Pg.562]    [Pg.222]    [Pg.1003]    [Pg.1514]    [Pg.1566]    [Pg.34]    [Pg.59]    [Pg.6]    [Pg.197]    [Pg.45]    [Pg.80]    [Pg.135]    [Pg.8]    [Pg.75]    [Pg.76]    [Pg.247]    [Pg.89]    [Pg.147]    [Pg.724]    [Pg.751]    [Pg.1037]    [Pg.175]    [Pg.442]    [Pg.607]   
See also in sourсe #XX -- [ Pg.6 ]




SEARCH



Ruthenium without hydrocarbons

© 2024 chempedia.info