Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Extraction, asymmetric

Jessop and co-workers studied asymmetric hydrogenation reactions with the catalyst complex Ru(OAc)2(tolBINAP) dissolved in [BMIM][PFg]. In both reactions under investigation - the hydrogenation of tiglic acid (Scheme 5.2.10) and the hydrogenation of the precursor of the anti-inflammatory dmg ibuprofen (Scheme 5.2.11) - no CO2 was present during the catalytic transformation. However, SCCO2 was used in both cases to extract the reaction products from the reaction mixture when the reaction was complete. [Pg.231]

Scheme 5.2-11 Ru-catalyzed asymmetric hydrogenation of isobutylatropic acid, followed by extraction of the product ibuprofen with SCCO2. Scheme 5.2-11 Ru-catalyzed asymmetric hydrogenation of isobutylatropic acid, followed by extraction of the product ibuprofen with SCCO2.
The first application involving a catalytic reaction in an ionic liquid and a subsequent extraction step with SCCO2 was reported by Jessop et al. in 2001 [9]. These authors described two different asymmetric hydrogenation reactions using [Ru(OAc)2(tolBINAP)] as catalyst dissolved in the ionic liquid [BMIM][PFg]. In the asymmetric hydrogenation of tiglic acid (Scheme 5.4-1), the reaction was carried out in a [BMIM][PF6]/water biphasic mixture with excellent yield and selectivity. When the reaction was complete, the product was isolated by SCCO2 extraction without contamination either by catalyst or by ionic liquid. [Pg.282]

In a similar manner, the asymmetric hydrogenation of isobutylatropic acid to afford the anti-inflammatory dmg ibuprofen has been carried out (Scheme 5.4-2). Here, the reaction was carried out in a [BMIM][PFg]/MeOH mixture, again followed by product extraction with SCCO2 (see Section 5.2.4.1 for more details on these hydrogenation reactions). [Pg.282]

In the pioneering work the same information was extracted from the extremum position assuming it is independent of y [143]. This is actually the case when isotropic scattering is studied by the CARS spectroscopy method [134]. The characteristic feature of the method is that it measures o(ico) 2 not the real part of Ko(icu), as conventional Raman scattering does. This is insignificant for symmetric Lorentzian contours, but not for the asymmetric spectra observed in rarefied gas. These CARS spectra are different from Raman ones both in shape and width until the spectrum collapses and its asymmetry disappears. In particular, it turns out that... [Pg.106]

A new class of solvents called ionic liquids has been developed to meet this need. A typical ionic liquid has a relatively small anion, such as BF4, and a relatively large, organic cation, such as l-butyl-3-methylimidazolium (16). Because the cation has a large nonpolar region and is often asymmetrical, the compound does not crystallize easily and so is liquid at room temperature. However, the attractions between the ions reduces the vapor pressure to about the same as that of an ionic solid, thereby reducing air pollution. Because different cations and anions can be used, solvents can be designed for specific uses. For example, one formulation can dissolve the rubber in old tires so that it can be recycled. Other solvents can be used to extract radioactive waste from groundwater. [Pg.327]

The lipophilicity of the TRISPHAT anion 8 also confers to its salts an affinity for organic solvents and, once dissolved, the ion pairs do not partition in aqueous layers. This rather uncommon property was used by Lacour s group to develop a simple and practical resolution procedure of chiral cationic coordination complexes by asymmetric extraction [134,135]. Selectivity ratios as high as 35 1 were measured for the enantiomers of ruthenium(II) trisdiimine complexes, demonstrating without ambiguity the efficiency of the resolution procedure [134]. [Pg.36]

Microscopy methods based on nonlinear optical phenomena that provide chemical information are a recent development. Infrared snm-frequency microscopy has been demonstrated for LB films of arachidic acid, allowing for surface-specific imaging of the lateral distribution of a selected vibrational mode, the asymmetric methyl stretch [60]. The method is sensitive to the snrface distribntion of the functional gronp as well as to lateral variations in the gronp environmental and conformation. Second-harmonic generation (SHG) microscopy has also been demonstrated for both spread monolayers and LB films of dye molecules [61,62]. The method images the molecular density and orientation field with optical resolution, and local qnantitative information can be extracted. [Pg.67]

Extraction can be performed in stirred tanks if the process proceeds fast and separation of phases is ea.sy, but column extractors are most commonly used. The column can be filled with a particulate material. The liquids flow countercurrently whereby the flow can be uniform or pulsed. Reciprocated and rotary agitators are often used to enhance mass transfer. An example of the latter type is shown in Fig. 7.2-13 (asymmetric rotating disk (ARD) extractor). [Pg.454]

A unique situation is encountered if Fe-M6ssbauer spectroscopy is applied for the study of spin-state transitions in iron complexes. The half-life of the excited state of the Fe nucleus involved in the Mossbauer experiment is tj/2 = 0.977 X 10 s which is related to the decay constant k by tj/2 = ln2/fe. The lifetime t = l//c is therefore = 1.410 x 10 s which value is just at the centre of the range estimated for the spin-state lifetime Tl = I/Zclh- Thus both the situations discussed above are expected to appear under suitable conditions in the Mossbauer spectra. The quantity of importance is here the nuclear Larmor precession frequency co . If the spin-state lifetime Tl = 1/feLH is long relative to the nuclear precession time l/co , i.e. Tl > l/o) , individual and sharp resonance lines for the two spin states are observed. On the other hand, if the spin-state lifetime is short and thus < l/o) , averaged spectra with intermediate values of quadrupole splitting A q and isomer shift 5 are found. For the intermediate case where Tl 1/cl , broadened and asymmetric resonance lines are obtained. These may be the subject of a lineshape analysis that will eventually produce values of rate constants for the dynamic spin-state inter-conversion process. The rate constants extracted from the spectra will be necessarily of the order of 10 -10 s"F... [Pg.108]

Since soy lecithin ( 20% extract from Avanti) was selected as a basis for absorption modeling, and since 37 % of its content is unspecified, it is important to at least establish that there are no titratable substituents near physiological pH. Asymmetric triglycerides, the suspected unspecified components, are not expected to ionize. Suspensions of multilamellar vesicles of soy lecithin were prepared and titrated across the physiological pH range, in both directions. The versatile Bjerrum plots (Chapter 3) were used to display the titration data in Fig. 7.33. (Please note the extremely expanded scale for %.) It is clear that there are no ionizable groups... [Pg.198]

To uniquely associate the unusual behavior of the collision observables with the existence of a reactive resonance, it is necessary to theoretically characterize the quantum state that gives rise to the Lorentzian profile in the partial cross-sections. Using the method of spectral quantization (SQ), it is possible to extract a Seigert state wavefunction from time-dependent quantum wavepackets using the Fourier relation Eq. (21). The state obtained in this way for J = 0 is shown in Fig. 7 this state is localized in the collinear F — H — D arrangement with 3-quanta of excitation in the asymmetric stretch mode, and 0-quanta of excitation in the bend and symmetric stretch modes. If the state pictured in Fig. 7 is used as an initial (prepared) state in a wavepacket calculation, one observes pure... [Pg.64]

We have previously shown that a 209 amino acid region (aa288-497, asymmetric localization domain) of Insc is necessary and sufficient for apical cortical localization and for mitotic spindle orientation along the apical-basal axis (Tio et al 1999). In a yeast two-hybrid screen we identified Partner of Inscuteable (Pins), a novel 658aa protein with multiple repeats of the Tetratricopeptide (TPR) motif. Affinity purification experiments using embryonic extracts demonstrate that Pins complexes with Insc in vivo. In vitro protein interaction assays demonstrates that Pins interacts with the Insc asymmetric localization domain (see Yu et al 2000). [Pg.142]

Analogous conclusions can of course be extracted from the NMR spectra of molecules of type N bearing an asymmetric carbon atom and two diastereotopie methyl groups on tin (see Table 2) ... [Pg.65]

The production process for (S)-phenylalanine as an intermediate in aspartame perpetuates the principle of reracemization of the nondesired enantiomer (Figure 4.5) in a hollow fiber/ liquid membrane reactor. Asymmetric hydrolysis of the racemic phenylalanine isopropylester at pH 7.5 leads to enantiopure phenylalanine applying subtilisin Carlsberg. The unconverted enantiomer is continuously extracted via a supported liquid membrane [31] that is immobilized in a microporous membrane into an aqueous solution of pH 3.5. The desired hydrolysis product is charged at high pH and cannot, therefore, be extracted into the acidic solution [32]. [Pg.85]

An alternative to extraction crystallization is used to obtain a desired enantiomer after asymmetric hydrolysis by Evonik Industries. In such a way, L-amino acids for infusion solutions or as intermediates for pharmaceuticals are prepared [35,36]. For example, non-proteinogenic amino acids like L-norvaline or L-norleucine are possible products. The racemic A-acteyl-amino acid is converted by acylase 1 from Aspergillus oryzae to yield the enantiopure L-amino acid, acetic acid and the unconverted substrate (Figure 4.7). The product recovery is achieved by crystallization, benefiting from the low solubility of the product. The product mixture is filtrated by an ultrafiltration membrane and the unconverted acetyl-amino acid is reracemized in a subsequent step. The product yield is 80% and the enantiomeric excess 99.5%. [Pg.86]

Fig. 5 Mean-field phase diagrams for asymmetric ABA triblocks spanning between diblock (r = 0.0) and symmetric triblock (r = 0.5) limits at segregations of a xN = 20, b /N = 30 and c xN = 40 calculated with SCFT. Dotted curves critical asymmetries rc predicted by SST beyond which short A blocks are extracted from their domains. From [32]. Copyright 2000 American Institute of Physics... Fig. 5 Mean-field phase diagrams for asymmetric ABA triblocks spanning between diblock (r = 0.0) and symmetric triblock (r = 0.5) limits at segregations of a xN = 20, b /N = 30 and c xN = 40 calculated with SCFT. Dotted curves critical asymmetries rc predicted by SST beyond which short A blocks are extracted from their domains. From [32]. Copyright 2000 American Institute of Physics...

See other pages where Extraction, asymmetric is mentioned: [Pg.13]    [Pg.13]    [Pg.76]    [Pg.271]    [Pg.312]    [Pg.212]    [Pg.464]    [Pg.465]    [Pg.95]    [Pg.121]    [Pg.151]    [Pg.157]    [Pg.12]    [Pg.91]    [Pg.277]    [Pg.280]    [Pg.119]    [Pg.263]    [Pg.481]    [Pg.437]    [Pg.187]    [Pg.79]    [Pg.39]    [Pg.294]    [Pg.162]    [Pg.77]    [Pg.83]    [Pg.1122]    [Pg.128]    [Pg.136]    [Pg.132]    [Pg.85]    [Pg.104]   
See also in sourсe #XX -- [ Pg.35 ]




SEARCH



Extraction Asymmetric Rotating Disk

© 2024 chempedia.info