Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ruthenium stability

Scheme 6.25 shows a plausible mechanism involving ruthenium vinylidene and ruthenium-stabilized ketene intermediates. The ketene intermediate was verified through efficient trapping of this spedes with isobutanol to produce esters [23]. Nucleophilic attack by epoxide oxygen at the Ca-carbon of ruthenium vinylidene produces the seven-membered ether spedes 64, which ultimately forms ruthenium... [Pg.205]

Stabilized ketene 6S. For l, 2 -disubstituted epoxide, species 6S undergoes 6-endo-dig electrocyclization (path b) [24] to form the six-membered ketone 66, ultimately giving naphthol products. l, 2, 2 -Trisubstituted epoxide species 6S undergoes 5-endo-dig cyclization (path a) to give the ketone species 67, finally producing l-alkylidene-2-indanones. The dialkyl substituent of the epoxide enhances the 5-endo-dig cyclization of species 65 via formation of a stable tertiary carbocation 67. We observed similar behavior for the cyclization of (o-styryl)ethynylbenzenes [15, 16]. Formation of 2,4-cyclohexadien-l-one is explicable according to 6-endo-dig cyclization of a ruthenium-stabilized ketene, vhich ultimately afforded the observed products [25]. [Pg.207]

The stability of soluble ruthenium carbonyl species toward decomposition to metal is a function of both carbon monoxide partial pressure and reaction temperature, similar to the situation described earlier for cobalt complexes and shown in Fig. 4. However, a quantitative study of these variables on ruthenium stability has not yet been reported. [Pg.380]

Propargylic alcohols bearing a terminal triple bond react with electron-rich aromatic compounds in the presence of thiolate-bridged diruthenium complexes to give the propargylated aromatic compounds.30 l-Phenylprop-2-yn-l-ol, for example, reacts with 2-methylfuran to form (15). Intramolecular examples of the reaction were also reported. The process is believed to involve electrophilic attack by the ruthenium-stabilized propargyl cation. [Pg.191]

A model manure solution was prepared based on 10% glucose (as a carbohydrate hydrolysate model) with the various mineral components. The model solution was processed with three different catalyst formulations for comparison. The two nickel catalysts, ruthenium stabilized and copper stabilized (4), exhibited no effects from the contaminants, while the ruthenium showed reduced activity similar to that already noted. [Pg.818]

Physico-chemical and catalytic properties of zirconia supported ruthenium and ruthenium-platinum catalysts were investigated. In order to improve the ruthenium stability a second noble metal, namely platinum, was introduced into the catalyst. Ten catalysts, consisting of zirconia supported Ru and/or Pt were prepared. [Pg.555]

The infrared spectra of CO on colloidal platinum, palladium, and ruthenium stabilized with either cellulose acetate or nitrocellulose have been reported. [23] Although the spectra show an interesting size dependence in the case of ruthenium in nitrocellulose, interpretation is difficult since the spectra differ markedly from those reported for CO on supported ruthenium. For the platinum sols, a preference for linear CO coordination is observed, as is the case for the supported metal, while for palladium the bridging mode is preferred exdusively. [Pg.515]

Qi et al. [32] tested autothermal reforming of n-octane over a ruthenium catalyst, which was composed of 0.5 wt.% ruthenium stabilized by ceria and potassium on y-alumina. It showed full conversion of n-octane for 800 h. However, the selectivity moved from carbon dioxide and methane toward carbon monoxide and light hydrocarbons, which has to be regarded as an indication of catalyst degradation during long-term tests despite the fact that full conversion was achieved. After 800 h the catalyst consequently showed incomplete conversion. Tests performed on the spent catalyst revealed losses of specific surface area and of 33 wt.% of the noble metal. [Pg.334]

Imidazole is characterized mainly by the T) (N) coordination mode, where N is the nitrogen atom of the pyridine type. The rare coordination modes are T) - (jt-) realized in the ruthenium complexes, I-ti (C,N)- in organoruthenium and organoosmium chemistry. Imidazolium salts and stable 1,3-disubsti-tuted imidazol-2-ylidenes give a vast group of mono-, bis-, and tris-carbene complexes characterized by stability and prominent catalytic activity. Benzimidazole follows the same trends. Biimidazoles and bibenzimidazoles are ligands as the neutral molecules, mono- and dianions. A variety of the coordination situations is, therefore, broad, but there are practically no deviations from the expected classical trends for the mono-, di-, and polynuclear A -complexes. [Pg.167]

Ruthenium- and cobalt-catalyzed hydroformylation of internal and terminal alkenes in molten [PBuJBr was reported by Knifton as early as in 1987 [2]. The author described a stabilization of the active ruthenium-carbonyl complex by the ionic medium. An increased catalyst lifetime at low synthesis gas pressures and higher temperatures was observed. [Pg.235]

Ruthenium, iridium and osmium Baths based on the complex anion (NRu2Clg(H20)2) are best for ruthenium electrodeposition. Being strongly acid, however, they attack the Ni-Fe or Co-Fe-V alloys used in reed switches. Reacting the complex with oxalic acid gives a solution from which ruthenium can be deposited at neutral pH. To maintain stability, it is necessary to operate the bath with an ion-selective membrane between the electrodes . [Pg.566]

There are no convincing reports of halides in oxidation states below III early reports of Osl and OsI2 seem to result from oxide contaminations. Neither is there OSF3, evidence of the greater stability of the +4 state compared with that of ruthenium. [Pg.2]

It appeared to be a logical consequence to transfer this synthetic principle to more suitable metals like ruthenium and introduce bulky, kinetically stabilizing ligands at the metal. An interesting example for this approach is the complex 78. The latter is synthesized from Cp RuCl(PR3)2 with ClMgCH2SiMe2H through 77 by a thermal Si — H activation reaction. [Pg.38]

The acceptance of a (new) catalytically mediated methodology by the target-directed synthetic community strongly depends on the availability, stability, and functional group tolerance of the respective catalysts. With the commercial availability of Grubbs5 benzylidene ruthenium catalyst A [13] and Schrock s even more active, yet highly air- and moisture-sensitive molybdenum catalyst B [14]... [Pg.273]

The palladium and platinum metals also form carbonyl compounds. Of the expected compounds Pd(CO)4, Pt(CO)4, Ru(CO)5, Os (CO) 5, Mo-(CO)e, and W(CO)6 only Mo(CO)e has been prepared, although some unsaturated ruthenium carbonyls have been prepared. The compounds Pd(CO)2Cl2, Pt(CO)2Cl2, K[PtCOCl3], etc., show the stability of the four dsp2 bonds. It would be interesting to determine whether or not each CO is bonded to two metal atoms in compounds such as [Pt(CO)Cl2]2, whose structure is predicted to be... [Pg.97]

The reaction of the coordinatively unsaturated ruthenium amidinates with [Cp RuCl]4 tetramer or [CpRufMeCNlsJPFg provides access to novel amidinate-bridged dinuclear ruthenium complexes (Scheme 146), which in turn can be transformed into cationic complexes or hydride derivatives. In these complexes, a bridging amidinate ligand perpendicular to the metal-metal axis effectively stabilizes the highly reactive cationic diruthenium species. [Pg.282]

To select the metal to be incorporated into the substrate porphyrin unit, the following basic properties of metalloporphyrins should be considered. The stability constant of MgPor is too small to achieve the usual oligomeric reactions and purification by silica gel chromatography. The starting material (Ru3(CO)i2) for Ru (CO)Por is expensive and the yield of the corresponding metalation reaction is low. Furthermore, the removal of rutheniirm is difficult, and it is likewise difficult to remove the template from the obtained ruthenium CPOs. Therefore, ZnPor is frequently used as a substrate in this template reaction, because of the low prices of zinc sources (zinc acetate and/or zinc chloride), the high yield in the metalation reaction, the sufficient chemical stability of the ZnPor under con-... [Pg.72]

The coupling reaction of 1 (M=Zn) affords CPO 3 (M=Zn) in 55% yield in the presence of template 2 however, the absence of 2 decreases the yield to 34% [22]. With the increase of yield of 3, template 2 induces the selectivity of the reaction the yield of the by-product (cychc dimer 4 (M=Zn)) was changed from 23% (with no template) to 6% (in the presence of template). A similar CPO formation reaction was reported for the corresponding ruthenium porphyrins (3, M=Ru(CO)), in which the stability constant of the Ru-N coordination bond is 10 larger than that of the Zn-N coordination bond [23]. Although the transition state of the CPO produced by the ruthenium-based substrate is expected to be more stable than that produced by ZnPor, the yield of 3 (M=Ru(CO)) is only... [Pg.73]


See other pages where Ruthenium stability is mentioned: [Pg.202]    [Pg.32]    [Pg.202]    [Pg.32]    [Pg.177]    [Pg.81]    [Pg.673]    [Pg.1097]    [Pg.1104]    [Pg.3]    [Pg.558]    [Pg.783]    [Pg.16]    [Pg.416]    [Pg.417]    [Pg.138]    [Pg.178]    [Pg.234]    [Pg.238]    [Pg.270]    [Pg.274]    [Pg.283]    [Pg.335]    [Pg.34]    [Pg.39]    [Pg.56]    [Pg.276]    [Pg.94]    [Pg.215]    [Pg.276]    [Pg.75]    [Pg.311]    [Pg.314]    [Pg.315]   
See also in sourсe #XX -- [ Pg.418 ]




SEARCH



The stability of ruthenium catalyst

© 2024 chempedia.info