Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ruthenium, properties

R140 D. K. Dutta, Ruthenium Carbonyl Complexes. Synthesis and Catalytic Hydrogenation Reactions , in Ruthenium Properties, Production and Applications, ed. D. B. Watson, Nova Science Publishers, Inc. Hauppauge,... [Pg.30]

Armspach D, Constable E C, Diederich F, Housecroft C E and Nierengarten J-F 1998 Bucky ligands synthesis, ruthenium(ll) complexes, and electrochemical properties Chem. Eur. J. 4 723-33... [Pg.2436]

Ruthenium and osmium have hep crystal stmetures. These metals have properties similar to the refractory metals, ie, they are hard, britde, and have relatively poor oxidation resistance (see Refractories). Platinum and palladium have fee stmetures and properties akin to gold, ie, they are soft, ductile, and have excellent resistance to oxidation and high temperature corrosion. [Pg.163]

Miscellaneous. Ruthenium dioxide-based thick-film resistors have been used as secondary thermometers below I K (92). Ruthenium dioxide-coated anodes ate the most widely used anode for chlorine production (93). Ruthenium(IV) oxide and other compounds ate used in the electronics industry as resistor material in apphcations where thick-film technology is used to print electrical circuits (94) (see Electronic materials). Ruthenium electroplate has similar properties to those of rhodium, but is much less expensive. Electrolytes used for mthenium electroplating (95) include [Ru2Clg(OH2)2N] Na2[Ru(N02)4(N0)0H] [13859-66-0] and (NH 2P uds(NO)] [13820-58-1], Several photocatalytic cycles that generate... [Pg.178]

Table 25.1 Some properties of the elements iron, ruthenium and osmium... Table 25.1 Some properties of the elements iron, ruthenium and osmium...
In the iron, ruthenium, and osmium derivatives, there are eases of r] re-switeh on thermolysis followed by the elimination of small ligands. Organo-ruthenium speeies eontaining pyrazol-l-ylborate or -methane ligands with bulky substituents often have uneoordinated pyrazol-l-yl moieties and agostie R—B(C) - - - M interaetion. The latter sometimes influenees the properties of the jj -eoordinated speeies as well. [Pg.226]

Ruthenium, iridium and osmium The use of a fused cyanide electrolyte is the most effective means for the production of sound relatively thick coatings of ruthenium and iridium, but this type of process is unattractive and inconvenient for general purposes and does not therefore appear to have developed yet to a significant extent for industrial application. This is unfortunate, since these metals are the most refractory of the platinum group and in principle their properties might best be utilised in the form of coatings. However, several interesting improvements have been made in the development of aqueous electrolytes. [Pg.563]

A thin layer deposited between the electrode and the charge transport material can be used to modify the injection process. Some of these arc (relatively poor) conductors and should be viewed as electrode materials in their own right, for example the polymers polyaniline (PAni) [81-83] and polyethylenedioxythiophene (PEDT or PEDOT) [83, 841 heavily doped with anions to be intrinsically conducting. They have work functions of approximately 5.0 cV [75] and therefore are used as anode materials, typically on top of 1TO, which is present to provide lateral conductivity. Thin layers of transition metal oxide on ITO have also been shown [74J to have better injection properties than ITO itself. Again these materials (oxides of ruthenium, molybdenum or vanadium) have high work functions, but because of their low conductivity cannot be used alone as the electrode. [Pg.537]

Almost every metal atom can be inserted into the center of the phthalocyanine ring. Although the chemistry of the central metal atom is sometimes influenced in an extended way by the phthalocyanine macrocycle (for example the preferred oxidation state of ruthenium is changed from + III to + II going from metal-free to ruthenium phthalocyanine) it is obvious that the chemistry of the coordinated metal of metal phthalocyanines cannot be generalized. The reactions of the central metal atom depend very much on the properties of the metal. [Pg.739]

Catalysts. The methanation of CO and C02 is catalyzed by metals of Group VIII, by molybdenum (Group VI), and by silver (Group I). These catalysts were identified by Fischer, Tropsch, and Dilthey (18) who studied the methanation properties of various metals at temperatures up to 800°C. They found that methanation activity varied with the metal as follows ruthenium > iridium > rhodium > nickel > cobalt > osmium > platinum > iron > molybdenum > palladium > silver. [Pg.23]

Tungsten halides, 3, 974, 984, 988 synthesis, 3,974 Tungsten hexaalkoxides physical properties, 2,347 Tungsten oxide ruthenium oxide support... [Pg.240]

We will focus on the development of ruthenium-based metathesis precatalysts with enhanced activity and applications to the metathesis of alkenes with nonstandard electronic properties. In the class of molybdenum complexes [7a,g,h] recent research was mainly directed to the development of homochi-ral precatalysts for enantioselective olefin metathesis. This aspect has recently been covered by Schrock and Hoveyda in a short review and will not be discussed here [8h]. In addition, several important special topics have recently been addressed by excellent reviews, e.g., the synthesis of medium-sized rings by RCM [8a], applications of olefin metathesis to carbohydrate chemistry [8b], cross metathesis [8c,d],enyne metathesis [8e,f], ring-rearrangement metathesis [8g], enantioselective metathesis [8h], and applications of metathesis in polymer chemistry (ADMET,ROMP) [8i,j]. Application of olefin metathesis to the total synthesis of complex natural products is covered in the contribution by Mulzer et al. in this volume. [Pg.228]

Plutonium-noble metal compounds have both technological and theoretical importance. Modeling of nuclear fuel interactions with refractory containers and extension of alloy bonding theories to include actinides require accurate thermodynamic properties of these materials. Plutonium was shown to react with noble metals such as platinum, rhodium, iridium, ruthenium, and osmium to form highly stable intermetallics. [Pg.103]

The platinum-group metals comprise ruthenium (Ru), rhodium (Rh) and palladium (Pd) from the second transition series and osmium (Os), iridium(Ir), and platinum (Pt) from thethird transition series. Little or no C VD investigation of palladium and osmium have been reported and these metalsarenotincludedhere. The properties of the other platinum-group metals are summarized in Table 6.9. [Pg.162]

Rhodium i s a hard metal with high reflectance and good resi stance to corrosion. Ruthenium has properties which are similar to those of rhodium.l" The C VD ofboth metals is similar. [Pg.164]

Polynuclear transition metal cyanides such as the well-known Prussian blue and its analogues with osmium and ruthenium have been intensely studied Prussian blue films on electrodes are formed as microcrystalline materials by the electrochemical reduction of FeFe(CN)g in aqueous solutionThey show two reversible redox reactions, and due to the intense color of the single oxidation states, they appear to be candidates for electrochromic displays Ion exchange properties in the reduced state are limited to certain ions having similar ionic radii. Thus, the reversible... [Pg.58]

Hydride Complexes of Ruthenium, Rhodium, and Iridium G. L. Geoffroy and J. R. Lehman Structures and Physical Properties of Polynuclear Carboxylates Janet Catterick and Peter Thornton... [Pg.440]

The lipophilicity of the TRISPHAT anion 8 also confers to its salts an affinity for organic solvents and, once dissolved, the ion pairs do not partition in aqueous layers. This rather uncommon property was used by Lacour s group to develop a simple and practical resolution procedure of chiral cationic coordination complexes by asymmetric extraction [134,135]. Selectivity ratios as high as 35 1 were measured for the enantiomers of ruthenium(II) trisdiimine complexes, demonstrating without ambiguity the efficiency of the resolution procedure [134]. [Pg.36]

To select the metal to be incorporated into the substrate porphyrin unit, the following basic properties of metalloporphyrins should be considered. The stability constant of MgPor is too small to achieve the usual oligomeric reactions and purification by silica gel chromatography. The starting material (Ru3(CO)i2) for Ru (CO)Por is expensive and the yield of the corresponding metalation reaction is low. Furthermore, the removal of rutheniirm is difficult, and it is likewise difficult to remove the template from the obtained ruthenium CPOs. Therefore, ZnPor is frequently used as a substrate in this template reaction, because of the low prices of zinc sources (zinc acetate and/or zinc chloride), the high yield in the metalation reaction, the sufficient chemical stability of the ZnPor under con-... [Pg.72]

Ozenler SS, Kadirgan F (2006) The effect of the matrix on the electro-catalytic properties of methanol tolerant oxygen reduction catalysts based on ruthenium-chalcogenides. J Power Sources 154 364-369... [Pg.343]

Ruthenium-copper and osmium-copper clusters (21) are of particular interest because the components are immiscible in the bulk (32). Studies of the chemisorption and catalytic properties of the clusters suggested a structure in which the copper was present on the surface of the ruthenium or osmium (23,24). The clusters were dispersed on a silica carrier (21). They were prepared by wetting the silica with an aqueous solution of ruthenium and copper, or osmium and copper, salts. After a drying step, the metal salts on the silica were reduced to form the bimetallic clusters. The reduction was accomplished by heating the material in a stream of hydrogen. [Pg.255]

The results of the EXAFS studies on osmium-copper clusters lead to conclusions similar to those derived for ruthenium-copper clusters. That is, an osmium-copper cluster Is viewed as a central core of osmium atoms with the copper present at the surface. The results of the EXAFS investigations have provided excellent support for the conclusions deduced earlier (21,23,24) from studies of the chemisorption and catalytic properties of the clusters. Although copper is immiscible with both ruthenium and osmium in the bulk, it exhibits significant interaction with either metal at an interface. [Pg.261]

Since ruthenium and rhodium are neighboring elements in the periodic table, a closer comparison of the properties of ruthenium-copper and rhodium-copper clusters is of interest (17). When we compare EXAFS results on rhodium-copper and ruthenium-copper catalysts in which the Cu/Rh and Cu/Ru atomic ratios are both equal to one, we find some differences which can be related to the differences in miscibility of copper with ruthenium and rhodium. The extent of concentration of copper at the surface appears to be lower for the rhodium-copper clusters than for the ruthenium-copper clusters, as evidenced by the fact that rhodium exhibits a greater tendency than ruthenium to be coordinated to copper atoms in such clusters. The rhodium-copper clusters presumably contain some of the copper atoms in the interior of the clusters. [Pg.261]

Because of- the similarity in the backscattering properties of platinum and iridium, we were not able to distinguish between neighboring platinum and iridium atoms in the analysis of the EXAFS associated with either component of platinum-iridium alloys or clusters. In this respect, the situation is very different from that for systems like ruthenium-copper, osmium-copper, or rhodium-copper. Therefore, we concentrated on the determination of interatomic distances. To obtain accurate values of interatomic distances, it is necessary to have precise information on phase shifts. For the platinum-iridium system, there is no problem in this regard, since the phase shifts of platinum and iridium are not very different. Hence the uncertainty in the phase shift of a platinum-iridium atom pair is very small. [Pg.262]


See other pages where Ruthenium, properties is mentioned: [Pg.1304]    [Pg.4758]    [Pg.1304]    [Pg.4758]    [Pg.221]    [Pg.177]    [Pg.177]    [Pg.178]    [Pg.81]    [Pg.41]    [Pg.739]    [Pg.34]    [Pg.214]    [Pg.227]    [Pg.234]    [Pg.274]    [Pg.360]    [Pg.142]    [Pg.59]    [Pg.191]    [Pg.72]    [Pg.257]    [Pg.93]   
See also in sourсe #XX -- [ Pg.3 , Pg.7 ]

See also in sourсe #XX -- [ Pg.137 ]

See also in sourсe #XX -- [ Pg.279 ]

See also in sourсe #XX -- [ Pg.338 , Pg.346 ]

See also in sourсe #XX -- [ Pg.4 , Pg.279 ]




SEARCH



Antimicrobial Properties of NHC-Ruthenium(II) Complexes

Luminescence properties ruthenium complexes

Ruthenium atomic properties

Ruthenium bulk properties

Ruthenium catalyst, chemisorptive properties

Ruthenium chemical properties

Ruthenium chemisorptive properties

Ruthenium electrical properties

Ruthenium isotopes and their properties

Ruthenium magnetic properties

Ruthenium mechanical properties

Ruthenium nuclear properties

Ruthenium optical properties

Ruthenium physical properties

Ruthenium redox properties

Ruthenium spectral properties

Ruthenium spectroscopic properties

Ruthenium tetroxide properties

Ruthenium thermal properties

Ruthenium thermodynamic propertie

Ruthenium, tris in hydrogen production from water photochemical properties

© 2024 chempedia.info