Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ruthenium nuclear properties

Potzel et al. [Ill] have established recoil-free nuclear resonance in another ruthenium nuclide, ° Ru. This isotope, however, is much less profitable than Ru for ruthenium chemistry because of the very small resonance effect as a consequence of the high transition energy (127.2 keV) and the much broader line width (about 30 times broader than the Ru line). The relevant nuclear properties of both ruthenium isotopes are listed in Table 7.1 (end of the book). The decay... [Pg.270]

The elements will be discussed in the order of increasing atomic number in the Periodic Table, i.e. nickel, zinc, technetium, ruthenium, silver, hafnium, tantalum, tungsten, rhem um, osmium, iridium, platinum, gold, and mercury. Full numerical data of the relevant nuclear properties are summarized, as for other elements, in Appendix 1. [Pg.493]

Plutonium-noble metal compounds have both technological and theoretical importance. Modeling of nuclear fuel interactions with refractory containers and extension of alloy bonding theories to include actinides require accurate thermodynamic properties of these materials. Plutonium was shown to react with noble metals such as platinum, rhodium, iridium, ruthenium, and osmium to form highly stable intermetallics. [Pg.103]

Ruthenium has a considerable propensity to form polynuclear complexes, particularly with carboxylate ligands which as bridging ligands span the Ru centres, sometimes accompanied by a bridging 0x0 ligand. Preparation and properties of bi- and tri-nuclear acetato complexes of Ru have been reviewed [552]. [Pg.76]

Plutonium-noble metal compounds have both technological and theoretical importance. Modeling of nuclear fuel interactions with refractory containers and extension of alloy bonding theories to include actinides require accurate thermodynamic properties of these materials. Plutonium was shown to react with noble metals such as platinum, rhodium, iridium, ruthenium, and osmium to form highly stable intermetallics. Vapor pressures of phases in these systems were measured by the Knudsen effusion technique. Use of mass spectrometer-target collection apparatus to perform thermodynamic studies is discussed. The prominent sublimation reactions for these phases below 2000 K was shown to involve formation of elemental plutonium vapor. Thermodynamic properties determined in this study were correlated with corresponding values obtained from theoretical predictions and from previous measurements on analogous intermetallics. [Pg.99]

It seems that one of the future developments in cluster chemistry lies in the production of nanosized particles (1 nm = 10 A) with well defined stoichiometries, which can be used as catalysts or as catalyst precursors. In this context, high nuclearity mixed-metal clusters are particularly useful because two or more metal atoms with different chemical properties can be combined in the same unit. The Cambridge group has spent the last few years designing rational synthetic routes to mixed-metal high nuclearity clusters of ruthenium and osmium with the coinage elements, which produce cluster cores of up to one nanometer in size. ... [Pg.444]

Abstract The metal-driven construction of multi-porphyrin assemblies, which exploits the formation of coordination bonds between exocyclic donor site(s) on the porphyrins and metal centers, has recently allowed the design and preparation of sophisticated supra-molecular architectures whose complexity and function begin to approach the properties of naturally occurring systems. Within this framework, meso-pyridyl/phenyl porphyrins (PyPs), or strictly related chromophores, can provide geometrically well-defined connections to as many as four metal centers by coordination of the pyridyl peripheral groups. Several discrete assemblies of various nuclearities, in which the pyridylporphyrins are connected through external coordination compounds, have been constructed in recent years. In this review, we summarize recent work in this field from our and other laboratories. The photophysical properties of some ruthenium-mediated assemblies of porphyrins prepared by our group are also described. [Pg.105]

The results of the Ames test for mutagenesis Indicate that many ruthenium compounds Introduce serious lesions into cellular genetic material so that an error-prone DNA repair mechanism is Induced. These results are similar to those obtained for clsplatln (M) and suggest that these complexes probably bind directly to nuclear DNA. In concert with this, many of the ruthenium complexes also Inhibit cellular DNA synthesis (H, ), another property also noted for the cls-platlnum drugs. Unfortunately, however, there Is no correlation between either of these studies and the antitumor activity of ruthenium compounds tested In animal systems. [Pg.174]

Further, the existence of a number of stable radioisotopes of ruthenium holds promise for development of agents for organ imaging, and it should be remembered that ruthenium will possess some properties similar to those of technetium, whose complexes have been used for some considerable time for this purpose. In this respect, Clarke [28] has pointed out that considerable information on distribution of radioruthenium in animals has been accumulated because it is a major product in nuclear reactor waste. [Pg.147]


See other pages where Ruthenium nuclear properties is mentioned: [Pg.155]    [Pg.145]    [Pg.44]    [Pg.57]    [Pg.118]    [Pg.316]    [Pg.51]    [Pg.604]    [Pg.420]    [Pg.150]    [Pg.109]    [Pg.677]    [Pg.153]    [Pg.781]    [Pg.242]    [Pg.786]    [Pg.422]    [Pg.819]    [Pg.195]    [Pg.47]    [Pg.220]    [Pg.324]    [Pg.134]    [Pg.197]    [Pg.217]   
See also in sourсe #XX -- [ Pg.710 ]




SEARCH



Nuclear properties

Ruthenium properties

© 2024 chempedia.info