Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rubber definition

The rubber definition with its swelling test certainly limits it to only the natural latex tree sources, whereas the elastomer definition is more in line with modem new... [Pg.1012]

The mercury barometer (Fig. 10-11) indicates directly the absolute pressure of the atmosphere in terms of height of the mercuiy column. Normal (standard) barometric pressure is 101.325 kPa by definition. Equivalents of this pressure in other units are 760 mm mercury (at 0°C), 29.921 iuHg (at 0°C), 14.696 IbFin, and 1 atm. For cases in which barometer readings, when expressed by the height of a mercuiy column, must be corrected to standard temperature (usually 0°C), appropriate temperature correction factors are given in ASME PTC, op. cit., pp. 23-26 and Weast, Handbook of Chemistty and Physics, 59th ed., Chemical Rubber, Cleveland, 1978-1979, pp. E39-E41. [Pg.890]

These data for typical properties of EP polymers are either as measured or as advertised by respective manufacturers. This table is not intended to be definitive either in terms of the total grade slate or the specific data reported for each producer. Note that the molecular weight distribution data are based on a qualitative comparison of GPC curves. Mooney viscosities are repotted for final product form (i.e.. in the case of oil-extended rubbers, the viscosity is that of the EP plus oil. [Pg.191]

Various materials (e.g., metal, plastics, or rubber) are used to make the flexing elements in these couplings. The use of the couplings is governed by the operational fatigue limits of these materials. Practically all metals have fatigue limits that are predictable, therefore, they permit definite boundaries of operation to be established. Elastomers such as plastic or rubber, however, usually do not have a well-defined fatigue limit. Their service life is determined primarily by conditions of installation and operation. [Pg.993]

For satisfactory operation, the rubber lining must be adequately bonded to the substrate it is protecting. BS 6374 part 5 gives definitive load to peel levels for various elastomers, but it is usually required that, on separation, the rubber should tear rather than part either at the primer/rubber interface or the primer/substrate interface. [Pg.945]

A crystalline solid is a solid in which the atoms, ions, or molecules lie in an orderly array (Fig. 5.16). A crystalline solid has long-range order. An amorphous solid is one in which the atoms, ions, or molecules lie in a random jumble, as in butter, rubber, and glass (Fig. 5.17). An amorphous solid has a structure like that of a frozen instant in the life of a liquid, with only short-range order. Crystalline solids typically have flat, well-defined planar surfaces called crystal faces, which lie at definite angles to one another. These faces are formed by orderly layers of atoms (Box 5.1). Amorphous solids do not have well-defined faces unless they have been molded or cut. [Pg.310]

Seeding technique, procedure 130, 131 Sequential addition of monomers 164, 167 Silicon-carbide fibers 8 Silicon-nitride fibers 8 Silicone rubber, crosslinked 4, 7-9, 31, 67 Siloxane, definition of 5 Siloxane-acrylate copolymers 27, 29, 56, 57, 64, 70, 71, 73, 74... [Pg.253]

Principles and Characteristics A first step in additive analysis is the identification of the matrix. In this respect the objective for most polymer analyses for R D purposes is merely the definition of the most appropriate extraction conditions (solvent choice), whereas in rubber or coatings analysis usually the simultaneous characterisation of the polymeric components and the additives is at stake. In fact, one of the most basic tests to carry out on a rubber sample is to determine the base polymer. Figure 2.1 shows the broad variety of additive containing polymeric matrices. [Pg.30]

Infrared spectroscopy is a major tool for polymer and rubber identification [11,12]. Infrared analysis usually suffices for identification of the plastic material provided absence of complications by interferences from heavy loadings of additives, such as pigments or fillers. As additives can impede the unambiguous assignment of a plastic, it is frequently necessary to separate the plastic from the additives. For example, heavily plasticised PVC may contain up to 60% of a plasticiser, which needs to be removed prior to attempted identification of the polymer. Also an ester plasticiser contained in a nitrile rubber may obscure identification of the polymer. Because typical rubber compounds only contain some 50% polymer direct FUR analysis rarely provides a definitive answer. It is usually necessary first... [Pg.31]

Conventional rubber compound analysis requires several instrumental techniques, in addition to considerable pretreatment of the sample to isolate classes of components, before these selected tests can be definitive. Table 2.5 lists some general analytical tools. Spectroscopic methods such as FTIR and NMR often encounter difficulties in the analysis of vulcanised rubbers since they are insoluble and usually contain many kinds of additives such as a curing agent, plasticisers, stabilisers and fillers. Pyrolysis is advantageous for the practical analysis of insoluble polymeric materials. [Pg.33]

In principle, any type of sample can be analysed by SEC provided that it can be solubilised and that there are no enthalpic interactions between sample and packing material. By definition then, this technique cannot be carried out on vulcanisates and even unvulcanised fully compounded rubber samples can present problems due to filler-rubber interactions. The primary use of SEC is to determine the whole MWD of polymers and the various averages (number, viscosity, weight, z-average) based on a calibration curve and to allow qualitative comparisons of different samples. Many commercial polymers have a broad MWD leading to strong peak overlap in the chromatography of complex multicomponent systems. [Pg.261]

Facilitate pre-vulcanisation processing, increase softness, extensibility and flexibility of the vulcanised end-product. The rubber processing industry consumes large quantities of materials which have a plasticising function complex mixtures (paraffinic, naphthenic, aromatic) of mineral hydrocarbon additives, used with the large tonnage natural and synthetic hydrocarbon rubbers, are termed process oils. Because of the complexity of these products, precise chemical definition is usually not attempted. If the inclusion of an oil results in cost reduction it is functioning as an extender. The term plasticiser is commonly reserved for synthetic liquids used with the polar synthetic rubber. [Pg.783]

Polymeric particles traditionally have been called latex beads or spheres, probably from the classic definition of an emulsion of rubber or plastic globules in water . However, due to... [Pg.589]

The recognised body in the United Kingdom for the preparation of specifications for quality, performance or dimensions, methods of test, definitions and symbols, codes of practice, etc. British Standards are prepared under the guidance of representative committees and are widely circulated before they are authorised for publication. BSI co-operates in preparing international standards for rubber and plastics through ISO/TC45 and ISO/TC61 respectively. See ISO. [Pg.15]

The rubber may be natural, in which case the latex is produced by the rubber tree. Latex of the main synthetic rubbers is produced by the technique of emulsion polymerisation. The term latex has been broadened in recent years and a general definition is now a stable dispersion of a polymeric substance in an aqueous medium . Latices may be classified as natural (from trees and plants), synthetic (by emulsion polymerisation) and artificial (by dispersion of the solid polymer in an aqueous medium). They may also be classified according to the chemical nature of the polymer, e.g., SBR, nitrile, polychloroprene, etc. [Pg.36]

The degree of moisture present affects the properties of the silicone rubber vulcanisate. Moisture levels also determine the ease with which the filler is incorporated into the silicone rubber. Low moisture levels improve the final physical properties but definitely detract from the incorporation speed of the silica filler. [Pg.146]

At the macroscopic level, a solid is a substance that has both a definite volume and a definite shape. At the microscopic level, solids may be one of two types amorphous or crystalline. Amorphous solids lack extensive ordering of the particles. There is a lack of regularity of the structure. There may be small regions of order separated by large areas of disordered particles. They resemble liquids more than solids in this characteristic. Amorphous solids have no distinct melting point. They simply become softer and softer as the temperature rises. Glass, rubber, and charcoal are examples of amorphous solids. [Pg.162]


See other pages where Rubber definition is mentioned: [Pg.256]    [Pg.256]    [Pg.187]    [Pg.930]    [Pg.936]    [Pg.941]    [Pg.473]    [Pg.411]    [Pg.464]    [Pg.823]    [Pg.236]    [Pg.913]    [Pg.4]    [Pg.41]    [Pg.408]    [Pg.564]    [Pg.607]    [Pg.657]    [Pg.602]    [Pg.462]    [Pg.3]    [Pg.315]    [Pg.40]    [Pg.123]    [Pg.102]    [Pg.18]    [Pg.393]    [Pg.562]    [Pg.82]   
See also in sourсe #XX -- [ Pg.29 ]




SEARCH



Rubber-like materials, definition

© 2024 chempedia.info