Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rubber characterization

The following are general notes and comments concerning the use of NMR specifically for common rubber characterization problems. A schematic of a Fourier Transform NMR spectrometer is given in Figure 8. [Pg.62]

Dick. John S., and Pawlowski, Henry. Rubber characterization by applied strain variations using the rubber process analyzer. Rubber If w/r/(January 1995). [Pg.222]

Plastics and Rubber Characterization STTP at Los Alamos National Lab... [Pg.713]

Attempts to characterize polymeric substances had been made, of course, and high molecular weights were indicated, even if they were not too accurate. Early workers tended to be more suspicious of the interpretation of the colliga-tive properties of polymeric solutions than to accept the possibility of high molecular weight compounds. Faraday had already arrived at Cs Hg as the empirical formula of rubber in 1826, and isoprene was identified as the product... [Pg.1]

Acrylic rubbers, as is the case for most specialty elastomers, are characterized by higher price and smaller consumption compared to general-purpose mbbers. The total mbber consumption ia 1991 was forecast (55) at 15.7 million t worldwide with a 66% share for synthetic elastomers (10.4 x 10 t). Acryhc elastomers consumption, as a minor amount of the total synthetic mbbers consumption, can hardly be estimated. As a first approximation, the ACM consumption is estimated to be 7000 t distributed among the United States, Western Europe, and Japan/Far East, where automotive production is significantly present. [Pg.478]

An unusual method for the preparation of syndiotactic polybutadiene was reported by The Goodyear Tire Rubber Co. (43) a preformed cobalt-type catalyst prepared under anhydrous conditions was found to polymerize 1,3-butadiene in an emulsion-type recipe to give syndiotactic polybutadienes of various melting points (120—190°C). These polymers were characterized by infrared spectroscopy and nuclear magnetic resonance (44—46). Both the Ube Industries catalyst mentioned previously and the Goodyear catalyst were further modified to control the molecular weight and melting point of syndio-polybutadiene by the addition of various modifiers such as alcohols, nitriles, aldehydes, ketones, ethers, and cyano compounds. [Pg.531]

Polymerization processes are characterized by extremes. Industrial products are mixtures with molecular weights of lO" to 10. In a particular polymerization of styrene the viscosity increased by a fac tor of lO " as conversion went from 0 to 60 percent. The adiabatic reaction temperature for complete polymerization of ethylene is 1,800 K (3,240 R). Heat transfer coefficients in stirred tanks with high viscosities can be as low as 25 W/(m °C) (16.2 Btu/[h fH °F]). Reaction times for butadiene-styrene rubbers are 8 to 12 h polyethylene molecules continue to grow lor 30 min whereas ethyl acrylate in 20% emulsion reacts in less than 1 min, so monomer must be added gradually to keep the temperature within hmits. Initiators of the chain reactions have concentration of 10" g mol/L so they are highly sensitive to poisons and impurities. [Pg.2102]

In this section the rosins and rosin derivative resins, coumarone-indene and hydrocarbon resins, polyterpene resins and phenolic resins will be considered. The manufacture and structural characteristics of natural and synthetic resins will be first considered. In a second part of this section, the characterization and main properties of the resins will be described. Finally, the tackifier function of resins in rubbers will be considered. [Pg.597]

Carbon blacks are typical fillers for reinforcing rubber. An extensive literature has been devoted to the manufacture, structure, and characterization of carbon blacks, as well to their effects as fillers in polymers. Some specific and more detailed information can be found in Refs. [38,48]. [Pg.636]

Surface evaporation can be a limiting factor in the manufacture of many types of products. In the drying of paper, chrome leather, certain types of synthetic rubbers and similar materials, the sheets possess a finely fibrous structure which distributes the moisture through them by capillary action, thus securing very rapid diffusion of moisture from one point of the sheet to another. This means that it is almost impossible to remove moisture from the surface of the sheet without having it immediately replaced by capillary diffusion from the interior. The drying of sheetlike materials is essentially a process of surface evaporation. Note that with porous materials, evaporation may occur within the solid. In a porous material that is characterized by pores of diverse sizes, the movement of water may be controlled by capillarity, and not by concentration gradients. [Pg.131]

Antimonious acid H3Sb03 and its salts are less well characterized but a few meta-antimonites and polyantimonites are known, e.g. NaSb02, NaSb305.H20 and Na2Sb407. The oxide itself finds extensive use as a flame retardant in fabrics, paper, paints, plastics, epoxy resins, adhesives and rubbers. The scale of industrial use can be gauged from the US statistics which indicate an annual consumption of Sb203 of some 10000 tonnes in that country. [Pg.575]

This chapter mainly aims at describing the various methods and processes developed for hydrogenation of nitrile rubber. The characterization, physical properties, and application of hydrogenated nitrile rubber are also discussed. Another small section on hydroformylation of nitrile rubber has been included. [Pg.556]

Characterization and understanding of the microstructure become important after hydrogenation and hydroformylation of the nitrile rubber since the amount and distribution of the residual double bonds influence the properties of modified rubber. The conventional analytical tools have been used to characterize the elastomers. Spectroscopy is the most useful technique for determination of the degree of hydrogenation in nitrile rubber. [Pg.568]

Styrene-butadiene rubber (SBR) is the most widely used synthetic rubber. It can be produced by the copolymerization of butadiene (= 75%) and styrene (=25%) using free radical initiators. A random copolymer is obtained. The micro structure of the polymer is 60-68% trans, 14-19% cis, and 17-21% 1,2-. Wet methods are normally used to characterize polybutadiene polymers and copolymers. Solid state NMR provides a more convenient way to determine the polymer micro structure. ... [Pg.353]

Butyl ruhher vulcanizates have tensile strengths up to 2,000 psi, and are characterized hy low permeahility to air and a high resistance to many chemicals and to oxidation. These properties make it a suitable rubber for the production of tire inner tubes and inner liners of tubeless tires. The major use of butyl rubber is for inner tubes. Other uses include wire and cable insulation, steam hoses, mechanical goods, and adhesives. Chlorinated butyl is a low molecular weight polymer used as an adhesive and a sealant. [Pg.357]

Synthesis of hydrolytically stable siloxane-urethanes by the melt reaction of organo-hydroxy terminated siloxane oligomers with various diisocyanates have been reported i97,i98) -yhg polymers obtained by this route are reported to be soluble in cresol and displayed rubber-like properties. However the molecular weights obtained were not very high. A later report56) described the use of hydroxybutyl terminated disiloxanes in the synthesis of poly(urethane-siloxanes). No data on the characterization of the copolymers have been given. However, from our independent kinetic and synthetic studies on the same system 199), unfortunately, it is clear that these types of materials do not result in well defined multiphase copolymers. The use of low molecular weight hydroxypropyl-terminated siloxanes in the synthesis of siloxane-urethane type structures has also been reported 198). [Pg.40]

This is a nonpolar rubber with very little unsamration. Nanoclays as well as nanotubes have been used to prepare nanocomposites of ethylene-propylene-diene monomer (EPDM) rubber. The work mostly covers the preparation and characterization of these nanocomposites. Different processing conditions, morphology, and mechanical properties have been smdied [61-64]. Acharya et al. [61] have prepared and characterized the EPDM-based organo-nanoclay composites by X-ray diffracto-gram (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy... [Pg.35]

Chattopadhyay S., Chaki T.K., and Bhowmick A.K., New thermoplastic elastomers from poly(ethyle-neoctene) (engage), poly(ethylene-vinyl acetate) and low-density polyethylene by electron beam technology structural characterization and mechanical properties. Rubber Chem. TechnoL, 74, 815, 2001. Roy Choudhury N. and Dutta N.K., Thermoplastic elastomeric natural rubber-polypropylene blends with reference to interaction between the components. Advances in Polymer Blends and Alloys Technology, Vol. 5 (K. Finlayson, ed.), Technomic Publishers, Pensylvania, 1994, 161. [Pg.156]

Puskas, J.E., Pattern, W.E., Wetmore, P.M., and Krukonis, A. Synthesis and characterization of novel six-arm star polyisobutylene-polystyrene block copolymers. Rubber Chem. TechnoL, 72, 559-568, 1999. Puskas, J.E., Wetmore, P.M., and Krukonis, A. Supercritical fluid fractionation of polyisobutylene-polystyrene block copolymers, Polym. Prepr., 40, 1037-1038, 1999. [Pg.216]

Puskas, J.E., Paulo, C., and Altstadt, V. Mechanical and Viscoelastic Characterization of Hyperbranched Polyisobutylenes. Paper 76, ACS Rubber Division,160th Technical Meeting, October 16-19, Cleveland, OH, 2001. [Pg.217]

Uenoyama, S and Hoffman AS. Synthesis and characterization of acrylamide-N-isopropyl acrylamide copolymer grafts on silicone rubber substrates. Radiat. Phys. Chem., 1988, 32, 605-608. [Pg.254]

In the current work a Digital Instmments Dimension 3000 SPM was operated in force-volume mode using a probe with stiffness selected to match the stiffness of the sample. Standard silicon nitride probes with a nominal spring constant of 0.12 or 0.58 N/m were used for recombinant and native resilin samples. These samples were characterized in a PBS bath at a strain rate of 1 Hz. For synthetic rubbers, silicon probes with a nominal spring constant of 50 N/m were used and the material was characterized in air. Typically, at least three force-volume plots (16 X 16 arrays of force-displacement curves taken over a 10 X 10 p.m area) were recorded for each of the samples. [Pg.267]


See other pages where Rubber characterization is mentioned: [Pg.321]    [Pg.262]    [Pg.505]    [Pg.526]    [Pg.929]    [Pg.70]    [Pg.582]    [Pg.568]    [Pg.568]    [Pg.885]    [Pg.632]    [Pg.675]    [Pg.353]    [Pg.273]    [Pg.27]    [Pg.338]    [Pg.7]    [Pg.57]    [Pg.63]    [Pg.83]    [Pg.47]    [Pg.85]    [Pg.126]    [Pg.222]    [Pg.326]    [Pg.348]   
See also in sourсe #XX -- [ Pg.564 ]

See also in sourсe #XX -- [ Pg.62 ]




SEARCH



© 2024 chempedia.info