Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Resistance condenser

In most of its uses, e.g. the external surfaces of tinplate cans, tinned steel has only to resist condensed moisture. In the absence of pollution of the atmosphere by unusually large amounts of sulphur dioxide or chlorides, or of several days of continuous wetting, tinned steel remains unrusted even the thin porous coatings on the common grades of tinplate remain bright and unmarked over the periods involved in the commercial handling and domestic storage of cans, and the domestic use of kitchenware. When... [Pg.502]

Unsubstituted acetone resists condensation with 2,3-diformylthiophene (71BSF1437) but, surprisingly, reacts with 3,4-diformylfuran, -thiophene, and -pyrrole or 1,2-diformylferrocene (Table II). The reactivity of hydroxy-acetone allows the preparation of heterocycle-fused tropolones. [Pg.91]

PVT pressure-volume-temperature (also RC resistance condenser... [Pg.610]

Thermal shock crack resistance (condensed water sprash)... [Pg.44]

Nylon A class of synthetic fibres and plastics, polyamides. Manufactured by condensation polymerization of ct, oj-aminomonocarboxylic acids or of aliphatic diamines with aliphatic dicarboxylic acids. Also rormed specifically, e.g. from caprolactam. The different Nylons are identified by reference to the carbon numbers of the diacid and diamine (e.g. Nylon 66 is from hexamethylene diamine and adipic acid). Thermoplastic materials with high m.p., insolubility, toughness, impact resistance, low friction. Used in monofilaments, textiles, cables, insulation and in packing materials. U.S. production 1983 11 megatonnes. [Pg.284]

Of course, condensed phases also exliibit interesting physical properties such as electronic, magnetic, and mechanical phenomena that are not observed in the gas or liquid phase. Conductivity issues are generally not studied in isolated molecular species, but are actively examined in solids. Recent work in solids has focused on dramatic conductivity changes in superconducting solids. Superconducting solids have resistivities that are identically zero below some transition temperature [1, 9, 10]. These systems caimot be characterized by interactions over a few atomic species. Rather, the phenomenon involves a collective mode characterized by a phase representative of the entire solid. [Pg.87]

Fig. II, 17, 2 illustrates a fractional distillation unit f for use with glass helices. The column is provided with an electrically-heated jacket the resistance shown in the Figure may be replaced by a variable transformer. The still head is of the total-condensation variable take-off type aU the vapour at the top of the column is condensed, a portion of the condensate is returned to the column by means of the special stopcock (permitting of... Fig. II, 17, 2 illustrates a fractional distillation unit f for use with glass helices. The column is provided with an electrically-heated jacket the resistance shown in the Figure may be replaced by a variable transformer. The still head is of the total-condensation variable take-off type aU the vapour at the top of the column is condensed, a portion of the condensate is returned to the column by means of the special stopcock (permitting of...
The best replacement for borosilicate glassware is stainless steel. Stainless steel takes the heat, won t break, and, most importantly, is about as resistant to chemical degradation as the chemist can hope to find. For those items that won t be subjected to direct heat there can be some steel/metal or steel/plastic hybrids. In figure 3 is shown how flasks of any size can be made with two stainless steel mixing bowls welded together. Also shown is the vacuum adaptor and condenser. For the condenser only the inner pipe need be steel. The outside pipe can be copper or something. As for the other components of a distillation set up, well, they are made just as they look. [Pg.19]

The only acid-resistant protective group for carbonyl functions is the dicyanomethy-lene group formed by Knoevenagel condensation with malononitrile. Friedel-Crafts acylation conditions, treatment with hot mineral acids, and chlorination with sulfuryl chloride do not affect this group. They have, however, to be cleaved by rather drastic treatment with concentrated alkaline solutions (J.B. Basttis, 1963 H. Fischer, 1932 R.B. Woodward, 1960, 1961). [Pg.166]

Hexamethylolmelamine can further condense in the presence of an acid catalyst ether linkages can also form (see Urea Eormaldehyde ). A wide variety of resins can be obtained by careful selection of pH, reaction temperature, reactant ratio, amino monomer, and extent of condensation. Eiquid coating resins are prepared by reacting methanol or butanol with the initial methylolated products. These can be used to produce hard, solvent-resistant coatings by heating with a variety of hydroxy, carboxyl, and amide functional polymers to produce a cross-linked film. [Pg.1017]

The Maxwell and Voigt models of the last two sections have been investigated in all sorts of combinations. For our purposes, it is sufficient that they provide us with a way of thinking about relaxation and creep experiments. Probably one of the reasons that the various combinations of springs and dash-pots have been so popular as a way of representing viscoelastic phenomena is the fact that simple and direct comparison is possible between mechanical and electrical networks, as shown in Table 3.3. In this parallel, the compliance of a spring is equivalent to the capacitance of a condenser and the viscosity of a dashpot is equivalent to the resistance of a resistor. The analogy is complete... [Pg.172]

Furfural reacts with ketones to form strong, crosslinked resins of technical interest in the former Soviet Union the U.S. Air Force has also shown some interest (42,43). The so-called furfurylidene acetone monomer, a mixture of 2-furfurylidene methyl ketone [623-15-4] (1 )> bis-(2-furfurylidene) ketone [886-77-1] (14), mesityl oxide, and other oligomers, is obtained by condensation of furfural and acetone under basic conditions (44,45). Treatment of the "monomer" with an acidic catalyst leads initially to polymer of low molecular weight and ultimately to cross-linked, black, insoluble, heat-resistant resin (46). [Pg.79]

Positive-Tone Photoresists based on Dissolution Inhibition by Diazonaphthoquinones. The intrinsic limitations of bis-azide—cycHzed mbber resist systems led the semiconductor industry to shift to a class of imaging materials based on diazonaphthoquinone (DNQ) photosensitizers. Both the chemistry and the imaging mechanism of these resists (Fig. 10) differ in fundamental ways from those described thus far (23). The DNQ acts as a dissolution inhibitor for the matrix resin, a low molecular weight condensation product of formaldehyde and cresol isomers known as novolac (24). The phenoHc stmcture renders the novolac polymer weakly acidic, and readily soluble in aqueous alkaline solutions. In admixture with an appropriate DNQ the polymer s dissolution rate is sharply decreased. Photolysis causes the DNQ to undergo a multistep reaction sequence, ultimately forming a base-soluble carboxyHc acid which does not inhibit film dissolution. Immersion of a pattemwise-exposed film of the resist in an aqueous solution of hydroxide ion leads to rapid dissolution of the exposed areas and only very slow dissolution of unexposed regions. In contrast with crosslinking resists, the film solubiHty is controUed by chemical and polarity differences rather than molecular size. [Pg.118]

Fig. 11. Synthesis of DNQ photosensitizers found in commercial resists, (a) Condensation of l,2-diazonaphthoquinone-5-sulfonyl chloride with 1,2,3-trihydroxybenzophenone. Often the reaction is not carried to completion so the product is a mixture of monodi- and trisubstituted products, (b)... Fig. 11. Synthesis of DNQ photosensitizers found in commercial resists, (a) Condensation of l,2-diazonaphthoquinone-5-sulfonyl chloride with 1,2,3-trihydroxybenzophenone. Often the reaction is not carried to completion so the product is a mixture of monodi- and trisubstituted products, (b)...
Numerous studies have probed how novolac microstmcture influences resist hthographic properties. In one example, a series of resists were formulated from novolacs prepared with varying feed ratios ofpara-jmeta-cmso. These researchers found that the dissolution rate decreased, and the resist contrast increased, as thepara-jmeta-cmso feed ratio increased (33). Condensation can only occur at the ortho position ofpara-cmso but can occur at both the ortho- and i ra-positions of meta-cmso. It is beheved that increased steric factors and chain rigidity that accompany increasedpara-cmso content modify the polymer solubihty. [Pg.122]

Bisphenol A. One mole of acetone condenses with two moles of phenol to form bisphenol A [80-05-07] which is used mainly in the production of polycarbonate and epoxy resins. Polycarbonates (qv) are high strength plastics used widely in automotive appHcations and appHances, multilayer containers, and housing appHcations. Epoxy resins (qv) are used in fiber-reinforced larninates, for encapsulating electronic components, and in advanced composites for aircraft—aerospace and automotive appHcations. Bisphenol A is also used for the production of corrosion- and chemical-resistant polyester resins, polysulfone resins, polyetherimide resins, and polyarylate resins. [Pg.99]

Polyquinoxalines (PQ) have proven to be one of the better heat-resistant polymers with regard to both stabiUty and potential appHcation. The aromatic backbones are derived from the condensation of a tetramine with a bis-glyoxal, reactions first done in 1964 (61,62). In 1967, a soluble, phenylated version of this polymer was produced (63). The chemistry and technology of polyquinoxalines has been reviewed (64). [Pg.535]

High molai mass polyuiethanes weie obtained from condensation of 4,4 -(hexa luoioisopiopylidene)bis(phenylchloiofomiate) with various diamines (125). These polymers could be cast into transparent, flexible, colodess films or spun into fibers which showed promise as crease-resistant fabrics. Other polyurethanes discovered are good candidates for naval and aerospace apphcations (126). [Pg.540]

Water. Latices should be made with deionized water or condensate water. The resistivity of the water should be at least lO Q. Long-term storage of water should be avoided to prevent bacteria growth. If the ionic nature of the water is poor, problems of poor latex stabiUty and failed redox systems can occur. Antifreeze additives are added to the water when polymerization below 0°C is required (37). Low temperature polymerization is used to limit polymer branching, thereby increasing crystallinity. [Pg.24]

In neutral and alkaline environments, the magnesium hydroxide product can form a surface film which offers considerable protection to the pure metal or its common alloys. Electron diffraction studies of the film formed ia humid air iadicate that it is amorphous, with the oxidation rate reported to be less than 0.01 /rni/yr. If the humidity level is sufficiently high, so that condensation occurs on the surface of the sample, the amorphous film is found to contain at least some crystalline magnesium hydroxide (bmcite). The crystalline magnesium hydroxide is also protective ia deionized water at room temperature. The aeration of the water has Httie or no measurable effect on the corrosion resistance. However, as the water temperature is iacreased to 100°C, the protective capacity of the film begias to erode, particularly ia the presence of certain cathodic contaminants ia either the metal or the water (121,122). [Pg.332]


See other pages where Resistance condenser is mentioned: [Pg.287]    [Pg.584]    [Pg.222]    [Pg.272]    [Pg.548]    [Pg.4]    [Pg.287]    [Pg.584]    [Pg.222]    [Pg.272]    [Pg.548]    [Pg.4]    [Pg.160]    [Pg.47]    [Pg.95]    [Pg.72]    [Pg.119]    [Pg.128]    [Pg.405]    [Pg.100]    [Pg.314]    [Pg.452]    [Pg.362]    [Pg.401]    [Pg.320]    [Pg.348]    [Pg.362]    [Pg.539]    [Pg.539]    [Pg.115]    [Pg.178]    [Pg.532]    [Pg.294]    [Pg.389]   
See also in sourсe #XX -- [ Pg.610 ]




SEARCH



© 2024 chempedia.info