Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Redox chromium

Because of the opposite charges of the two redox chromium species and the possibility to use an eluent without carbon, lEC is often preferred before detection by ICP-MS. Byrdy et have used an anion-exchange column that allows the retention of both Cr(VI) and Cr(III) after transformation of this last form into an anionic complex with EDTA. However, the ammonium sulfate mobile phase did not allow the analysis of Cr" " because this isotope is interfered by Although the presence of chloride ions did not disturb the detection of... [Pg.285]

Step 3 A series of redox reactions converts chromium from the 4+ oxidation state m HCr03 to the 3 + oxidation state... [Pg.643]

In this titration the analyte is oxidized from Fe + to Fe +, and the titrant is reduced from CryOy to Cr +. Oxidation of Fe + requires only a single electron. Reducing CryOy, in which chromium is in the +6 oxidation state, requires a total of six electrons. Conservation of electrons for the redox reaction, therefore, requires that... [Pg.347]

Redox flow batteries, under development since the early 1970s, are stUl of interest primarily for utility load leveling applications (77). Such a battery is shown schematically in Figure 5. Unlike other batteries, the active materials are not contained within the battery itself but are stored in separate tanks. The reactants each flow into a half-ceU separated one from the other by a selective membrane. An oxidation and reduction electrochemical reaction occurs in each half-ceU to generate current. Examples of this technology include the iron—chromium, Fe—Cr, battery (79) and the vanadium redox cell (80). [Pg.587]

Since World War 11, the U.S. space program and the military have used small amounts of insoluble chromates, largely barium and calcium chromates, as activators and depolarizers in fused-salt batteries (214,244). The National Aeronautics and Space Administration (NASA) has also used chromium (111) chloride as an electrolyte for redox energy storage cells (245). [Pg.149]

Friedrich et al. also used XPS to investigate the mechanisms responsible for adhesion between evaporated metal films and polymer substrates [28]. They suggested that the products formed at the metal/polymer interface were determined by redox reactions occurring between the metal and polymer. In particular, it was shown that carbonyl groups in polymers could react with chromium. Thus, a layer of chromium that was 0.4 nm in thickness decreased the carbonyl content on the surface of polyethylene terephthalate (PET) or polymethylmethacrylate (PMMA) by about 8% but decreased the carbonyl content on the surface of polycarbonate (PC) by 77%. The C(ls) and 0(ls) spectra of PC before and after evaporation of chromium onto the surface are shown in Fig. 22. Before evaporation of chromium, the C(ls) spectra consisted of two components near 284.6 eV that were assigned to carbon atoms in the benzene rings and in the methyl groups. Two additional... [Pg.273]

The following redox reaction between persulfate ions and chromium ions is carried out in aqueous acidic solution ... [Pg.641]

C04-0102. Write the balanced redox reactions for the formation of each of the following oxides from the reaction of molecular oxygen with pure metal (a) strontium oxide (b) chromium(III) oxide (c) tin(IV) oxide. [Pg.269]

Fig. 2. Potential diagram of the redox couples of chromium. According to Csanyi . References pp, 577-580... Fig. 2. Potential diagram of the redox couples of chromium. According to Csanyi . References pp, 577-580...
In a similar fashion, chromium ions Cr will reduce dissolved acetylene to ethylene and then are regenerated at the cathode from the Cr + ions that were formed in the reaction. Or, at a platinum electrode in a solution of AsO and AsO ions, the equilibrium potential of this redox system is not established. After the addition... [Pg.233]

Redox titrants (mainly in acetic acid) are bromine, iodine monochloride, chlorine dioxide, iodine (for Karl Fischer reagent based on a methanolic solution of iodine and S02 with pyridine, and the alternatives, methyl-Cellosolve instead of methanol, or sodium acetate instead of pyridine (see pp. 204-205), and other oxidants, mostly compounds of metals of high valency such as potassium permanganate, chromic acid, lead(IV) or mercury(II) acetate or cerium(IV) salts reductants include sodium dithionate, pyrocatechol and oxalic acid, and compounds of metals at low valency such as iron(II) perchlorate, tin(II) chloride, vanadyl acetate, arsenic(IV) or titanium(III) chloride and chromium(II) chloride. [Pg.297]

A novel polysiloxane, containing the isocyanide group pendent to the backbone, has been synthesized. It is observed to react with the metal vapors of chromium, iron and nickel to afford binary metal complexes of the type M(CN-[P])n, where n = 6, 5, 4 respectively, in which the polymer-attached isocyanide group provides the stabilization for the metal center. The product obtained from the reaction with Fe was found to be photosensitive yielding the Fe2(CN-[P])q species and extensive cross-linking of the polymer. The Cr and Ni products were able to be oxidized on exposure of thin films to the air, or electrochemically in the presence of an electron relay. The availability of different oxidation states for the metals in these new materials gives hope that novel redox-active polymers may be accessible. [Pg.238]

The multi-component procedure is also effective for the chromium-catalyzed addition of organic halides to aldehydes (the Nozaki-Hiyama-Kishi reaction) [73]. The active Cr(II) species is recycled by redox interaction with Mn powder as the stoichiometric co-reductant in the presence of MesSiCl (Scheme 34), which mainly liberates the chromium catalyst from the alkoxide adduct. The chemo- and diastereo-selective addition reaction is performed with a variety of organic halides and alkenyl triflates. In the case of crotyl bromide, the addition is highly stereoconvergent, i.e., the respective anti-... [Pg.81]

While the laws governing electrode potentials in non-aqueous media are basically the same as for potentials in aqueous solutions, the standardization in this case is not so simple. Two approaches can be adopted either a suitable standard electrode can be selected for each medium (e.g. the hydrogen electrode for the protic medium, the bis-diphenyl chromium(II)/ bis-diphenyl chromium(I) redox electrode for a wide range of organic... [Pg.195]

A suitable extrathermodynamic approach is based on structural considerations. The oldest assumption of this type was based on the properties of the rubidium(I) ion, which has a large radius but low deformability. V. A. Pleskov assumed that its solvation energy is the same in all solvents, so that the Galvani potential difference for the rubidium electrode (cf. Eq. 3.1.21) is a constant independent of the solvent. A further assumption was the independence of the standard Galvani potential of the ferricinium-ferrocene redox system (H. Strehlow) or the bis-diphenyl chromium(II)-bis-diphenyl chromium(I) redox system (A. Rusina and G. Gritzner) of the medium. [Pg.198]

The typical amber color of the hexavalent chromium solution will turn to a pale green once the chromium has been reduced to the trivalent state. Although this color change is a good indicator, redox control is usually employed. [Pg.241]

Redox reactions may cause mobile toxic ions to become either immobile or less toxic. Hexavalent chromium is mobile and highly toxic. It can be reduced to be rendered less toxic in the form of trivalent chromium sulfide by the addition of ferrous sulfate. Similarly, pentavalent (V) or trivalent (III) arsenic, arsenate or arsenite are more toxic and soluble forms. Arsenite (III) can be oxidized to As(IV). Arsenate (V) can be transformed to highly insoluble FeAs04 by the addition of ferrous sulfate. [Pg.630]

Species may differ by oxidation state for example, manganese(II) and (IV) iron(II) and (III) and chromium(III) and (VI). Oxidation state is influenced by the redox potential. Mobility is affected because oxidation state influences precipitation-dissolution reactions and also toxicity in the case of heavy metals. [Pg.790]

Thiocarbamate (tc, RHNCSO-) is a monodentate ambidentate ligand, and both oxygen- and sulfur-bonded forms are known for the simple pentaamminecobalt(III) complexes. These undergo redox reactions with chromium(II) ion in water via attack at the remote O or S atom of the S- and O-bound isomers respectively, with a structural trans effect suggested to direct the facile electron transfer in the former.1045 A cobalt-promoted synthesis utilizing the residual nucleophilicity of the coordinated hydroxide in [Co(NH3)5(OH)]2+ in reaction with MeNCS in (MeO)3PO solvent leads to the O-bonded monothiocarbamate, which isomerizes by an intramolecular mechanism to the S-bound isomer in water.1046... [Pg.93]

Chromium(III) is a commonly-used crosslinker for preparing profile control gels with polymers having carboxylate and amide functionalities (la,b). Cr(III) is applied in many forms. For example, it can be used in the form of simple chromic salts of chloride and sulfate, or as complexed Cr(III) used in leather tanning (2), or as in situ generated Cr(III) from the redox reaction of dichromate and bisulfite or thiourea. The gelation rate and gel quality depend on which form of Cr(III) is used. [Pg.142]

Scheme 7.18. Chromium-manganese redox couple-mediated domino process for the synthesis of benzoxazoles. Scheme 7.18. Chromium-manganese redox couple-mediated domino process for the synthesis of benzoxazoles.
Reduction-oxidation is one of the most important processes controlling solubility and speciation of trace elements in soils, especially for those elements with changeable values, such as Cr, As and Se. Within normal ranges of redox potentials and pH commonly found in soils, the two most important oxidation states for Cr are Cr(III) and Cr(VI). Cr(III) is the most stable form of chromium and less soluble and nontoxic, but Cr(VI) is mobile, soluble and toxic. The main aqueous species of Cr(III) are Cr3+, Cr(OH)2+, Cr(OH)3° and Cr(OH)4" and the major aqueous species of Cr(VI)... [Pg.103]

Diphenylcarbazone and diphenylcarbazide have been widely used for the spectrophotometric determination of chromium [ 190]. Crm reacts with diphenylcarbazone whereas CrVI reacts (probably via a redox reaction combined with complexation) with diphenylcarbazide [ 191 ]. Although speciation would seem a likely prospect with such reactions, commercial diphenylcarbazone is a complex mixture of several components, including diphenylcarbazide, diphenylcarbazone, phenylsemicarbazide, and diphenylcarbadiazone, with no stoichiometric relationship between the diphenylcarbazone and diphenylcarbazide [192]. As a consequence, use of diphenylcarbazone to chelate Crm selectively also results in the sequestration of some CrVI. Total chromium can be determined with diphenylcarbazone following reduction of all chromium to Crm. [Pg.160]

Using the modified thermodynamic database, we simulate reaction over 300 minutes in a fluid buffered to a pH of 7. We prescribe a redox disequilibrium model by disabling redox couples for chromium and sulfur. We set 10 mmolal NaCl as the background electrolyte, initial concentrations of 200 (imolal for CrVI and 800 innolal for H2S, and small initial masses of Cr2C>3 and S(aq). Finally, we set Equation 17.29 as the rate law and specify that pH be held constant over the simulation. [Pg.255]

Persson A process for making chlorine dioxide by reducing sodium chlorate with chromium (III) in the presence of sulfuric acid. The chromium (III) becomes oxidized to chromium (VI) and is then reduced back to chromium (III) with sulfur dioxide. This cyclic redox process with chromium avoids complications that would occur if sulfur dioxide itself were used as the reductant. Installed at the Stora Kopparbergs paper mill, Sweden, in 1946. Sheltmire, W. H., in Chlorine, its Manufacture, Properties and Uses, Sconce, J. S., Ed., Reinhold Publishing, New York, 1962,275,538. [Pg.208]


See other pages where Redox chromium is mentioned: [Pg.25]    [Pg.36]    [Pg.905]    [Pg.177]    [Pg.1033]    [Pg.1038]    [Pg.1112]    [Pg.166]    [Pg.636]    [Pg.190]    [Pg.255]    [Pg.154]    [Pg.142]    [Pg.507]    [Pg.16]    [Pg.588]    [Pg.346]    [Pg.381]    [Pg.203]    [Pg.264]    [Pg.173]   
See also in sourсe #XX -- [ Pg.496 , Pg.497 , Pg.499 ]




SEARCH



© 2024 chempedia.info