Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dissolution-Precipitation Reactions

Inorganic reactions in the soil interstitial waters also influence dissolved P concentrations. These reactions include the dissolution or precipitation of P-containing minerals or the adsorption and desorption of P onto and from mineral surfaces. As discussed above, the inorganic reactivity of phosphate is strongly dependent on pH. In alkaline systems, apatite solubility should limit groundwater phosphate whereas in acidic soils, aluminum phosphates should dominate. Adsorption of phosphate onto mineral surfaces, such as iron or aluminum oxyhydroxides and clays, is favored by low solution pH and may influence soil interstitial water concentrations. Phosphorus will be exchanged between organic materials, soil inter-... [Pg.365]

Besides induced oxidation-reduction reactions we often speak of induced dissolution, induced precipitation, as well as of induced complex formation there is even a reference to an induced reaction caused by neutralization. It is only necessary to examine briefly the latter cases. [Pg.510]

Species may differ by oxidation state for example, manganese(II) and (IV) iron(II) and (III) and chromium(III) and (VI). Oxidation state is influenced by the redox potential. Mobility is affected because oxidation state influences precipitation-dissolution reactions and also toxicity in the case of heavy metals. [Pg.790]

Environmental conditions determine in large part the chemical reactions that will occur when waste is injected. For example, precipitation-dissolution reactions are strongly controlled by pH. Thus, iron oxides, which may be dissolved in acidic wastes, may precipitate when injection-zone mixing increases the pH of the waste. Similarly, redox potential (Eh) exerts a strong control on the type of microbiological degradation of wastes. [Pg.806]

Strongly influences precipitation-dissolution reactions. Mixing of solutions with different pH often results in precipitation reactions. See also reservoir matrix below. [Pg.807]

Acid-base equilibrium is very important to inorganic chemical reactions. Adsorption-desorption and precipitation-dissolution reactions are also of major importance in assessing the geochemical fate of deep-well-injected inorganics. Interactions between and among metals in solution and solids in the deep-well environment can be grouped into four types1 2 3 4 ... [Pg.819]

Concentrations of trace elements in soil solution may be controlled by the solubility of certain solid phases via dissolution/(co-)precipitation or by other physicochemical and biological processes such as adsorption-desorption, complexation, and redox reactions. [Pg.95]

Robarge W.P. Precipitation/dissolution reactions in soils. In Soil Physical Chemistry, 2nd Sparks D.L., ed. Boca Raton, FL CRC Press, 1999. [Pg.349]

In kinetic reaction paths (discussed in Chapter 16), the rates at which minerals dissolve into or precipitate from the equilibrium system are set by kinetic rate laws. In this class of models, reaction progress is measured in time instead of by the nondimensional variable . According to the rate law, as would be expected, a mineral dissolves into fluids in which it is undersaturated and precipitates when supersaturated. The rate of dissolution or precipitation in the calculation depends on the variables in the rate law the reaction s rate constant, the mineraTs surface area, the degree to which the mineral is undersaturated or supersaturated in the fluid, and the activities of any catalyzing and inhibiting species. [Pg.16]

Do the kinetic rate constants and rate laws apply well to the system being studied Using kinetic rate laws to describe the dissolution and precipitation rates of minerals adds an element of realism to a geochemical model but can be a source of substantial error. Much of the difficulty arises because a measured rate constant reflects the dominant reaction mechanism in the experiment from which the constant was derived, even though an entirely different mechanism may dominate the reaction in nature (see Chapter 16). [Pg.25]

Rate constants for the dissolution and precipitation of quartz, for example, have been measured in deionized water (Rimstidt and Barnes, 1980). Dove and Crerar (1990), however, found that reaction rates increased by as much as one and a half orders of magnitude when the reaction proceeded in dilute electrolyte solutions. As well, reaction rates determined in the laboratory from hydrothermal experiments on clean systems differ substantially from those that occur in nature, where clay minerals, oxides, and other materials may coat mineral surfaces and hinder reaction. [Pg.25]

The latter two assumptions are simplistic, considering the number of factors that affect pH and oxidation state in the oceans (e.g., Sillen, 1967 Holland, 1978 McDuff and Morel, 1980). Consumption and production of CO2 and O2 by plant and animal life, reactions among silicate minerals, dissolution and precipitation of carbonate minerals, solute fluxes from rivers, and reaction between convecting seawater and oceanic crust all affect these variables. Nonetheless, it will be interesting to compare the results of this simple calculation to observation. [Pg.82]

Despite the authority apparent in its name, no single rate law describes how quickly a mineral precipitates or dissolves. The mass action equation, which describes the equilibrium point of a mineral s dissolution reaction, is independent of reaction mechanism. A rate law, on the other hand, reflects our idea of how a reaction proceeds on a molecular scale. Rate laws, in fact, quantify the slowest or rate-limiting step in a hypothesized reaction mechanism. [Pg.232]

In studying dissolution and precipitation, geochemists commonly consider that a reaction proceeds in five generalized steps ... [Pg.232]

To formulate a kinetic reaction path, we consider one or more minerals A whose rates of dissolution and precipitation are to be controlled by kinetic rate laws. We wish to avoid assuming that the minerals A- are in equilibrium with the... [Pg.233]

We might take a purist s approach and attempt to use kinetic theory to describe the dissolution and precipitation of each mineral that might appear in the calculation. Such an approach, although appealing and conceptually correct, is seldom practical. The database required to support the calculation would have to include rate laws for every possible reaction mechanism for each of perhaps hundreds of minerals. Even unstable minerals that can be neglected in equilibrium models would have to be included in the database, since they might well form in a kinetic model (see Section 26.4, Ostwald s Step Rule). If we are to allow new minerals to form, furthermore, it will be necessary to describe how quickly each mineral can nucleate on each possible substrate. [Pg.243]

Lee and Bethke (1996) presented an alternative technique, also based on mass balance equations, in which the reaction modeler can segregate minerals from isotopic exchange. By segregating the minerals, the model traces the effects of the isotope fractionation that would result from dissolution and precipitation reactions alone. Not unexpectedly, segregated models differ broadly in their results from reaction models that assume isotopic equilibrium. [Pg.270]

The reaction rate Rj in these equations is a catch-all for the many types of reactions by which a component can be added to or removed from solution in a geochemical model. It is the sum of the effects of equilibrium reactions, such as dissolution and precipitation of buffer minerals and the sorption and desorption of species on mineral surfaces, as well as the kinetics of mineral dissolution and precipitation reactions, redox reactions, and microbial activity. [Pg.302]

Retardation also arises when a fluid undersaturated or supersaturated with respect to a mineral invades an aquifer, if the mineral dissolves or precipitates according to a kinetic rate law. When the fluid enters the aquifer, a reaction front, which may be sharp or diffuse, develops and passes along the aquifer at a rate less than the average groundwater velocity. Lichtner (1988) has derived equations describing the retardation arising from dissolution and precipitation for a variety of reactive transport problems of this sort. [Pg.304]

Where dissolution or precipitation is sufficiently rapid, the species concentration quickly approaches the equilibrium value as water migrates along the aquifer the system is said to be reaction controlled. Alternatively, given rapid enough flow, water passes along the aquifer too quickly for the species concentration to be affected significantly by chemical reaction. The system in this case is transport controlled. The relative importance of reaction and transport is described formally by the nondimensional Damkohler number, written Da. [Pg.305]

In Chapter 16, we wrote rate laws for simple dissolution and precipitation reactions, such as those for the silica minerals forming from SiC>2(aq). Rewriting Equation 16.22 in terms of volumetric concentration C , assuming the activity coefficient Yi does not vary over the reaction, gives the rate law,... [Pg.305]

It is further interesting to observe that the behavior of a system approaching a thermodynamic equilibrium differs little from one approaching a steady state. According to the kinetic interpretation of equilibrium, as discussed in Chapter 16, a mineral is saturated in a fluid when it precipitates and dissolves at equal rates. At a steady state, similarly, the net rate at which a component is consumed by the precipitation reactions of two or more minerals balances with the net rate at which it is produced by the minerals dissolution reactions. Thermodynamic equilibrium viewed from the perspective of kinetic theory, therefore, is a special case of the steady state. [Pg.392]

Lichtner, P. C., E. H. Oelkers and H. C. Helgeson, 1986, Interdiffusion with multiple precipitation/dissolution reactions transient model and the steady-state limit. Geochimica et Cosmochimica Acta 50, 1951-1966. [Pg.522]

Steefel, C. I. and A.C. Lasaga, 1994, A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution reactions with application to reactive flow in single phase hydrothermal systems. American Journal of Science 294, 529-592. [Pg.530]

But within the pH range of natural waters, the dissolution (and precipitation) of carbonate minerals is surface controlled i.e., the rate of dissolution is rate determined by a chemical reaction at the water-mineral interface. Fig. 8.1 gives the data on the dissolution rates of various carbonate minerals in aqueous solutions obtained in careful studies by Chou and Wollast (1989). [Pg.290]

The phenomena of surface precipitation and isomorphic substitutions described above and in Chapters 3.5, 6.5 and 6.6 are hampered because equilibrium is seldom established. The initial surface reaction, e.g., the surface complex formation on the surface of an oxide or carbonate fulfills many criteria of a reversible equilibrium. If we form on the outer layer of the solid phase a coprecipitate (isomorphic substitutions) we may still ideally have a metastable equilibrium. The extent of incipient adsorption, e.g., of HPOjj on FeOOH(s) or of Cd2+ on caicite is certainly dependent on the surface charge of the sorbing solid, and thus on pH of the solution etc. even the kinetics of the reaction will be influenced by the surface charge but the final solid solution, if it were in equilibrium, would not depend on the surface charge and the solution variables which influence the adsorption process i.e., the extent of isomorphic substitution for the ideal solid solution is given by the equilibrium that describes the formation of the solid solution (and not by the rates by which these compositions are formed). Many surface phenomena that are encountered in laboratory studies and in field observations are characterized by partial, or metastable equilibrium or by non-equilibrium relations. Reversibility of the apparent equilibrium or congruence in dissolution or precipitation can often not be assumed. [Pg.301]

The relative importance of the EDL for reactions other than adsorption is not well understood. Surface complexation models have recently been applied to processes in which adsorption represents the first step in a sequence of reactions. For example, Stumm et al. (22) have applied a model with an EDL component in their studies of the role of adsorption in dissolution and precipitation reactions. The effect of surface charge and potential on precipitation and the... [Pg.5]

It is necessary to consider a number of equilibrium reactions in an analysis of a hydrometallurgical process. These include complexing reactions that occur in solution as well as solubility reactions that define equilibria for the dissolution and precipitation of solid phases. As an example, in analyzing the precipitation of iron compounds from sulfuric acid leach solutions, McAndrew, et al. (11) consider up to 32 hydroxyl and sulfate complexing reactions and 13 precipitation reactions. Within a restricted pH range only a few of these equilibria are relevant and need to be considered. Nevertheless, equilibrium constants for the relevant reactions must be known. Furthermore, since most processes operate at elevated temperatures, it is essential that these parameters be known over a range of temperatures. The availability of this information is discussed below. [Pg.627]


See other pages where Dissolution-Precipitation Reactions is mentioned: [Pg.169]    [Pg.169]    [Pg.498]    [Pg.271]    [Pg.37]    [Pg.301]    [Pg.390]    [Pg.485]    [Pg.150]    [Pg.46]    [Pg.796]    [Pg.236]    [Pg.101]    [Pg.28]    [Pg.219]    [Pg.16]    [Pg.390]    [Pg.301]    [Pg.248]    [Pg.128]    [Pg.290]    [Pg.12]    [Pg.158]    [Pg.221]   
See also in sourсe #XX -- [ Pg.844 ]




SEARCH



Chromium precipitation/dissolution reactions

Dissolution/precipitation

Kinetics of Precipitation and Dissolution Reactions

Metals/metalloids precipitation-dissolution reactions

Precipitants reactions

Precipitate dissolution

Reaction precipitation

Reactions dissolution

© 2024 chempedia.info