Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Recovery plant

Thermal Stability. At processing temperatures in both the extraction and recovery plants the solvent should be completely stable to avoid expensive solvent losses contamination of the solvent by any solvent breakdown products must be avoided. [Pg.88]

The latest of three ethylene recovery plants was started in 1991. Sasol sold almost 300,000 t of ethylene in 1992. Sasol also produces polypropylene at Secunda from propylene produced at Sasol Two. In 1992 Sasol started constmction of a linear alpha olefin plant at Secunda to be completed in 1994 (40). Initial production is expected to be 100,000 t/yr pentene and hexene. Sasol also has a project under constmction to extract and purify krypton and xenon from the air separation plants at Sasol Two. Other potential new products under consideration at Sasol are acrylonitrile, acetic acid, acetates, and alkylamines. [Pg.168]

The initial biogas recovered is an MHV gas and is often upgraded to high heat value (HHV) gas when used for blending with natural gas suppHes. The aimual production of HHV gas ia 1987, produced by 11 HHV gasification facihties, was 116 x 10 m of pipehne-quaUty gas, ie, 0.004 EJ (121). This is an iacrease from the 1980 production of 11.3 X 10 m . Another 38 landfill gas recovery plants produced an estimated 218 x 10 m of MHV gas, ie, 0.005 EJ. Additions to production can be expected because of landfill recovery sites that have been identified as suitable for methane recovery. In 1988, there were 51 sites ia preliminary evaluation and 42 sites were proposed as potential sites (121). [Pg.42]

The market value of natural gas Hquids is highly volatile and historically has been weakly related to the world price of cmde oil. During the 1980s, the market value of natural gas Hquids ranged from approximately 60% of the price of cmde to 73% (12). In this 10-year interval, several fluctuations occurred in the natural gas Hquid market. Because of the variabiHty of the natural gas Hquid market, the NGL recovery plants need to have flexibiHty. Natural gas Hquid products compete in the following markets ethane propane a Hquefted petroleum gas (LPG) a C-3/C-4 mix and / -butane all compete as petrochemical feedstocks. Propane and LPG are also used as industrial and domestic fuels, whereas 2-butane and natural gasoline, consisting of C-5 and heavier hydrocarbons, are used as refinery feedstocks. [Pg.171]

In the Betterton-KroU process the dezinced lead is pumped to the debismuthizing kettie, in which special care is taken to remove drosses that wastefuUy consume the calcium and magnesium. The skimmed blocks from the previous debismuthizing kettie are added to the bath at 420°C and stirred for a short time to enrich the dross with the bismuth being extracted from the new charge. This enriched dross is skimmed to blocks and sent to the bismuth recovery plant. [Pg.47]

Slag and Htharge formed during cupeUation are segregated and reduced to a metal containing 20—25% ore more bismuth, depending on the bismuth content of the original buUion, and transferred to a bismuth recovery plant. [Pg.48]

The plant is designed to satisfy NSPS requirements. NO emission control is obtained by fuel-rich combustion in the MHD burner and final oxidation of the gas by secondary combustion in the bottoming heat recovery plant. Sulfur removal from MHD combustion gases is combined with seed recovery and necessary processing of recovered seed before recycling. [Pg.425]

Beginning in approximately 1975, both IMG and Ereeport Minerals operated large uranium recovery plants in the United States using this technology. Several plants continue to mn but a number have been closed because of the depressed uranium prices that resulted when uranium from the former Soviet Union flooded Western markets. A relatively small plant is operated by Prayon in Belgium (40). TOPO is available from Cytec Industries Inc. as CYANEX 921 extractant. D2EHPA is available from Albright Wilson Ltd. and is also sold by Daihachi as DP-8R. [Pg.320]

The metal dissolves readily in concentrated HCl, H PO, HI, or HCIO. Nitric acid (qv) forms a protective oxide skin on the metal and can be removed by ca 0.05 Af HF. Dissolution of Pu metal in HNO —HF mixtures is common practice in scrap-recovery plants. The metal does not dissolve readily in H2SO4 because passivation of the metal surface occurs. The reaction of water and Pu metal is slow compared to that in HCl, HI, or HCIO. ... [Pg.196]

Charcoal was an important industrial raw material in the United States for iron ore reduction until it was replaced by coal in the early 1880s. Charcoal production increased, however, because of the demand for the by-products acetic acid, methanol, and acetone. In 1920, nearly 100 by-product recovery plants were in operation in the United States, but the last plant ceased operation in 1969. [Pg.332]

TABLE 25-68 Energy Output and Efficiency for 1000 Metric Ton of Waste/Day Steam-Boiler Turbine-Generator Energy-Recovery Plant Using Unprocessed Industrial Solid Wastes with Energy Content of 12,000 kJ/kg... [Pg.2249]

The developed assay was successfully applied for the arsenite and arsenate determination in contaminated waters of the gold recovery plant and in snow covers of the industrial anthropogenic sources vicinities as well. The data produced are in a good agreement with the results of independent methods atomic absorptioin and atomic emission spectrometry and capillary electrophoresis. [Pg.428]

New Mexico s San Juan Gas Plant is one of the United States newest and largest natural gas liquids recovery plant. Commissioned in November 1986, its levels of productivity are high by industry standards. Located near Bloomfield, New Mexico, just south of tlie Colorado border, the plant is jointly owned by Conoco Inc. (then a subsidiary of the DuPont Company) and Tenneco Inc., both of Houston. It is operated by Conoco and is named after its location in the San Juan basin, an area of oil, gas, and coal production. [Pg.440]

Bromine All of the bromine produced in the United States is extracted from naturally occurring brines by steam extraction. The major air pollution concern is H2S from the stripper if H2S is present in the brine. The H2S can either be oxidized to SO2 in a flare or sent to a sulfur recovery plant. [Pg.499]

The Stretford Process sweetens and also produces sulfur. It is good for low feed gas concentrations of H2S. Economically, the Stretford Process is comparable to an amine plant plus a Claus sulfur recovery plant. Usually, the amine/Claus combination is favored over Stretford for large plants. Stretford can selectively remove H2S in the presence of high CO2 concentrations. This is the process used in the coal gasification example in the Introduction. [Pg.190]

The largest single use area for UPVC is for pipes and fittings. One particular area here is in chemical plant. It is of course necessary to check that all of the components of the PVC compound will be resistant to any of the chemicals with which the plant is liable to come into contact (at the appropriate temperatures) and also that additives will not be leached out by these chemicals. Particular uses are in acid recovery plant and in plant for handling hydrocarbons. [Pg.356]

Total reduced sulphur (sulphur recovery plants) 15A... [Pg.358]

Disposal constraints Design of treatment/disposal/ recovery plant Dispersion... [Pg.536]

Design of treatment/recovery plant ASTM methods... [Pg.537]

Particle size distribution Design of treatment or recovery plant see Suspensions in gases... [Pg.538]

Distillation range Design of recovery plant Distillation... [Pg.539]


See other pages where Recovery plant is mentioned: [Pg.281]    [Pg.528]    [Pg.43]    [Pg.43]    [Pg.48]    [Pg.101]    [Pg.85]    [Pg.96]    [Pg.559]    [Pg.423]    [Pg.85]    [Pg.20]    [Pg.303]    [Pg.188]    [Pg.536]    [Pg.536]    [Pg.536]    [Pg.537]    [Pg.537]    [Pg.538]    [Pg.538]    [Pg.538]    [Pg.538]    [Pg.538]    [Pg.539]    [Pg.540]    [Pg.131]   
See also in sourсe #XX -- [ Pg.788 , Pg.817 ]




SEARCH



© 2024 chempedia.info