Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reactor partial oxidation

Full oxidation in membrane reactor Partial oxidation in membrane reactor Oxidation and separation not integrated... [Pg.37]

In a partial oxidation process, methane and other hydrocarbons in natural gas react exothermically with less than stoichiometric oxygen to produce carbon monoxide and hydrogen. Typically, the partial oxidation of natural gas is much faster than steam reforming and, therefore, requires smaller reactors. Partial oxidation reactions are given as follows [1] ... [Pg.344]

Oxidation Step. A review of mechanistic studies of partial oxidation of propylene has appeared (58). The oxidation process flow sheet (Fig. 2) shows equipment and typical operating conditions. The reactors are of the fixed-bed shell-and-tube type (about 3—5 mlong and 2.5 cm in diameter) with a molten salt coolant on the shell side. The tubes are packed with catalyst, a small amount of inert material at the top serving as a preheater section for the feed gases. Vaporized propylene is mixed with steam and ak and fed to the first-stage reactor. The feed composition is typically 5—7% propylene, 10—30%... [Pg.152]

Equipment. Partial-oxidation gasification section equipment in many plants consists essentially of (/) the gasification reactor (2) the waste-heat exchanger for heat recovery from the hot reactor gas or direct quench system (J) the economizer heat exchanger for further heat recovery (4) the carbon removal system for separating carbon from the reactor product gas and (5) the carbon recovery system for recycle of carbon. [Pg.423]

Oxidation of cumene to cumene hydroperoxide is usually achieved in three to four oxidizers in series, where the fractional conversion is about the same for each reactor. Fresh cumene and recycled cumene are fed to the first reactor. Air is bubbled in at the bottom of the reactor and leaves at the top of each reactor. The oxidizers are operated at low to moderate pressure. Due to the exothermic nature of the oxidation reaction, heat is generated and must be removed by external cooling. A portion of cumene reacts to form dimethylbenzyl alcohol and acetophenone. Methanol is formed in the acetophenone reaction and is further oxidized to formaldehyde and formic acid. A small amount of water is also formed by the various reactions. The selectivity of the oxidation reaction is a function of oxidation conditions temperature, conversion level, residence time, and oxygen partial pressure. Typical commercial yield of cumene hydroperoxide is about 95 mol % in the oxidizers. The reaction effluent is stripped off unreacted cumene which is then recycled as feedstock. Spent air from the oxidizers is treated to recover 99.99% of the cumene and other volatile organic compounds. [Pg.288]

Approximately 45% of the world s phthaUc anhydride production is by partial oxidation of 0-xylene or naphthalene ia tubular fixed-bed reactors. Approximately 15,000 tubes of 25-mm dia would be used ia a 31,000 t/yr reactor. Nitrate salts at 375—410°C are circulated from steam generators to maintain reaction temperatures. The resultant steam can be used for gas compression and distillation as one step ia reduciag process energy requirements (100). [Pg.525]

Equation 1 is referred to as the selective reaction, equation 2 is called the nonselective reaction, and equation 3 is termed the consecutive reaction and is considered to proceed via isomerization of ethylene oxide to acetaldehyde, which undergoes rapid total combustion under the conditions present in the reactor. Only silver has been found to effect the selective partial oxidation of ethylene to ethylene oxide. The maximum selectivity for this reaction is considered to be 85.7%, based on mechanistic considerations. The best catalysts used in ethylene oxide production achieve 80—84% selectivity at commercially useful ethylene—oxygen conversion levels (68,69). [Pg.202]

Similar approaches are applicable in the chemical industry. For example, maleic anhydride is manufactured by partial oxidation of benzene in a fixed catalyst bed tubular reactor. There is a potential for extremely high temperatures due to thermal runaway if feed ratios are not maintained within safe limits. Catalyst geometry, heat capacity, and partial catalyst deactivation have been used to create a self-regulatory mechanism to prevent excessive temperature (Raghaven, 1992). [Pg.50]

This process includes two main sections the burner section with a reaction chamber that does not have a catalyst, and a Claus reactor section. In the burner section, part of the feed containing hydrogen sulfide and some hydrocarbons is burned with a limited amount of air. The two main reactions that occur in this section are the complete oxidation of part of the hydrogen sulfide (feed) to sulfur dioxide and water and the partial oxidation of another part of the hydrogen sulfide to sulfur. The two reactions are exothermic ... [Pg.116]

For producing hydrogen for ammonia synthesis, however, further treatment steps are needed. First, the required amount of nitrogen for ammonia must he obtained from atmospheric air. This is done hy partially oxidizing unreacted methane in the exit gas mixture from the first reactor in another reactor (secondary reforming). [Pg.141]

A new process for the partial oxidation of n-butane to maleic anhydride was developed by DuPont. The important feature of this process is the use of a circulating fluidized bed-reactor. Solids flux in the rizer-reactor is high and the superficial gas velocities are also high, which encounters short residence times usually in seconds. The developed catalyst for this process is based on vanadium phosphorous oxides... [Pg.176]

An alternative route to phthalic anhydride is the partial oxidation of naphthalene. The heat of reaction is — 430 kcal/mol. This reaction can be performed using a promoted V2O5 catalyst on silica, much like that considered in Example 9.1. Suppose In(fik) = 31.6800—19,100/T for the naphthalene oxidation reaction and that the subsequent, complete oxidation of phthalic anhydride follows the kinetics of Problem 9.3. Suppose it is desired to use the same reactor as in Example 9.1 but with a,>, = 53g/ m. Determine values for and T aii that maximize the output of phthalic anhydride from naphthalene. [Pg.346]

A packed-bed nonpermselective membrane reactor (PBNMR) is presented by Diakov et al. [31], who increased the operational stability in the partial oxidation of methanol by feeding oxygen directly and methanol through a macroporous stainless steel membrane to the PB. Al-Juaied et al. [32] used an inert membrane to distribute either oxygen or ethylene in the selective ethylene oxidation. By accounting for the proper kinetics of the reaction, the selectivity and yield of ethylene oxide could be enhanced over the fixed-bed reactor operation. [Pg.218]

Another industrially important reaction of propylene, related to the one above, is its partial oxidation in the presence of ammonia, resulting in acrylonitrile, H2C=CHCN. This ammoxidation reaction is also catalyzed by mixed metal oxide catalysts, such as bismuth-molybdate or iron antimonate, to which a large number of promoters is added (Fig. 9.19). Being strongly exothermic, ammoxidation is carried out in a fluidized-bed reactor to enable sufficient heat transfer and temperature control (400-500 °C). [Pg.373]

Concerning the reaction pathway, two routes have been proposed the sequence of total oxidation of methane, followed by reforming of the unconverted methane with CO2 and H2O (designated as indirect scheme), and the direct partial oxidation of methane to synthesis gas without the experience of CO2 and H2O as reaction intermediates. The results obtained by Schmidt and his co-workers [4, 5] indicate that the direct reaction scheme may be followed in a monolith reactor when an extremely short contact time is employed at temperatures in the neighborhood of 1000°C. However, the majority of previous studies over numerous types of catalysts show that the partial oxidation of methane follows the indirect reaction scheme, which is supported by the observation that a sharp temperature spike occurs near the entrance of the catalyst bed, and that essentially zero CO and H2 selectivity is obtained at low methane conversions (<25%) where oxygen is not fully consumed [2, 3]. A major problem encountered... [Pg.443]

We have summarized below recent results concerning spectroscopic / flow reactor investigations of hydrocarbons partial and total oxidation on different transition metal oxide catalysts. The aim of this study is to have more information on the mechanisms of the catalytic activity of transition metal oxides, to better establish selective and total oxidation ways at the catalyst surface, and to search for partial oxidation products from light alkane conversion. [Pg.483]


See other pages where Reactor partial oxidation is mentioned: [Pg.993]    [Pg.993]    [Pg.11]    [Pg.82]    [Pg.993]    [Pg.993]    [Pg.11]    [Pg.82]    [Pg.24]    [Pg.74]    [Pg.342]    [Pg.421]    [Pg.159]    [Pg.457]    [Pg.342]    [Pg.528]    [Pg.235]    [Pg.270]    [Pg.459]    [Pg.388]    [Pg.1132]    [Pg.157]    [Pg.177]    [Pg.345]    [Pg.194]    [Pg.195]    [Pg.295]    [Pg.274]    [Pg.617]    [Pg.685]    [Pg.685]    [Pg.687]    [Pg.687]    [Pg.817]    [Pg.820]    [Pg.444]    [Pg.446]    [Pg.483]   
See also in sourсe #XX -- [ Pg.26 , Pg.70 , Pg.81 , Pg.147 ]




SEARCH



Hydrocarbon Reforming 2 Partial Methane Oxidation Heat Exchanger Reactor

Indirect partial oxidation of methane in a catalytic tubular reactor

Membrane reactors partial oxidation reactions

Membrane reactors, methane partial oxidation

Oxidation partial

Oxidation reactor

Partial oxidation using membrane reactors

Partially oxidized

© 2024 chempedia.info