Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tubular fixed bed

Recent advances in Eischer-Tropsch technology at Sasol include the demonstration of the slurry-bed Eischer-Tropsch process and the new generation Sasol Advanced Synthol (SAS) Reactor, which is a classical fluidized-bed reactor design. The slurry-bed reactor is considered a superior alternative to the Arge tubular fixed-bed reactor. Commercial implementation of a slurry-bed design requires development of efficient catalyst separation techniques. Sasol has developed proprietary technology that provides satisfactory separation of wax and soHd catalyst, and a commercial-scale reactor is being commissioned in the first half of 1993. [Pg.164]

Fig. 3. Multiple fixed-bed configurations (a) adiabatic fixed-bed reactor, (b) tubular fixed beds, (c) staged adiabatic reactor witb interbed beating (cooling),... Fig. 3. Multiple fixed-bed configurations (a) adiabatic fixed-bed reactor, (b) tubular fixed beds, (c) staged adiabatic reactor witb interbed beating (cooling),...
Tubular Fixed-Bed Reactors. Bundles of downflow reactor tubes filled with catalyst and surrounded by heat-transfer media are tubular fixed-bed reactors. Such reactors are used most notably in steam reforming and phthaUc anhydride manufacture. Steam reforming is the reaction of light hydrocarbons, preferably natural gas or naphthas, with steam over a nickel-supported catalyst to form synthesis gas, which is primarily and CO with some CO2 and CH. Additional conversion to the primary products can be obtained by iron oxide-catalyzed water gas shift reactions, but these are carried out ia large-diameter, fixed-bed reactors rather than ia small-diameter tubes (65). The physical arrangement of a multitubular steam reformer ia a box-shaped furnace has been described (1). [Pg.525]

Approximately 45% of the world s phthaUc anhydride production is by partial oxidation of 0-xylene or naphthalene ia tubular fixed-bed reactors. Approximately 15,000 tubes of 25-mm dia would be used ia a 31,000 t/yr reactor. Nitrate salts at 375—410°C are circulated from steam generators to maintain reaction temperatures. The resultant steam can be used for gas compression and distillation as one step ia reduciag process energy requirements (100). [Pg.525]

For fixed-bed reactors containing rapidly deactivating catalysts, the scheduled changes ia operating variables to accommodate activity loss can have a marked effect on mn length. This is exemplified by acetylene hydrochiorination to produce vinyl chloride ia tubular fixed-bed reactors. Steel reactors,... [Pg.525]

The Fischer-Tropsch reaction is highly exothermic. Therefore, adequate heat removal is critical. High temperatures residt in high yields of methane, as well as coking and sintering of the catalyst. Three types of reac tors (tubular fixed bed, fluidized bed, and slurry) provide good temperature control, and all three types are being used for synthesis gas conversion. The first plants used tubular or plate-type fixed-bed reactors. Later, SASOL, in South Africa, used fluidized-bed reactors, and most recently, slurry reactors have come into use. [Pg.2377]

Scientists from Politecnico di Milano and Ineos Vinyls UK developed a tubular fixed-bed reactor comprising a metallic monolith [30]. The walls were coated with catalytically active material and the monolith pieces were loaded lengthwise. Corning, the world leader in ceramic structured supports, developed metallic supports with straight channels, zig-zag channels, and wall-flow channels. They were produced by extrusion of metal powders, for example, copper, fin, zinc, aluminum, iron, silver, nickel, and mixtures and alloys [31]. An alternative method is extrusion of softened bulk metal feed, for example, aluminum, copper, and their alloys. The metal surface can be covered with carbon, carbides, and alumina, using a CVD technique [32]. For metal monoliths, it is to be expected that the main resistance lies at the interface between reactor wall and monolith. Corning... [Pg.194]

The catalytic reaction was carried out at 270°C and 101.3 kPa in a stainless steel tubular fixed-bed reactor. The premixed reaction solution, with a molar ratio catechol. methanol water of 1 1 6, was fed into the reactor using a micro-feed pump. To change the residence time in the reactor, the catechol molar inlet flow (Fio) and the catalyst mass (met) were varied in the range 10 < Fio <10 mol-h and 2-10 < met < 310 kg. The products were condensed at the reactor outlet and collected for analysis. The products distribution was determined quantitatively by HPLC (column Nucleosil 5Ci8, flow rate, 1 ml-min, operating pressure, 18 MPa, mobile phase, CH3CN H2O =1 9 molar ratio). [Pg.172]

In the feed pretreatment section oil and water are removed from the recovered or converted CCI2F2. The reactor type will be a multi-tubular fixed bed reactor because of the exothermic reaction (standard heat of reaction -150 kJ/mol). After the reactor the acids are selectively removed and collected as products of the reaction. In the light removal section the CFCs are condensed and the excess hydrogen is separated and recycled. The product CH2F2 is separated from the waste such as other CFCs produced and unconverted CCI2F2. The waste will be catalytically converted or incinerated. A preliminary process design has shown that such a CFC-destruction process would be both technically and economically feasible. [Pg.377]

The One-Dimensional Pseudo Homogeneous Model of Fixed Bed Reactors. The design of tubular fixed bed catalytic reactors has generally been based on a one-dimensional model that assumes that species concentrations and fluid temperature vary only in the axial direction. Heat transfer between the reacting fluid and the reactor walls is considered by presuming that all of the resistance is contained within a very thin boundary layer next to the wall and by using a heat transfer coefficient based on the temperature difference between the fluid and the wall. Per unit area of the tube... [Pg.505]

Equations 12.7.48 and 12.7.39 provide the simplest one-dimensional mathematical model of tubular fixed bed reactor behavior. They neglect longitudinal dispersion of both matter and energy and, in essence, are completely equivalent to the plug flow model for homogeneous reactors that was examined in some detail in Chapters 8 to 10. Various simplifications in these equations will occur for different constraints on the energy transfer to or from the reactor. Normally, equations 12.7.48 and 12.7.39... [Pg.507]

In the first stage of the investigation the catalyst can be considered in the form of powder in order to derive intrinsic transient kinetics of all the relevant reactive processes. To this purpose, dynamic reactive experiments can be performed in a simple tubular fixed-bed microreactor over small quantities (50-200 mg) of finely powdered catalyst in principle, this guarantees negligible transport limitations and more controlled conditions (e.g. isothermal catalyst bed), hence enabling a direct estimation of intrinsic rate parameters by kinetic fit. Internal diffusion limitations are particularly relevant to the case of bulk (extruded) monolith catalysts, such as vanadium-based systems for NH3/urea SCR however, they... [Pg.124]

Kinetic expressions were determined for both a tubular fixed-bed reactor containing 30 mg catalyst particles and the micro reactor coated with the catalyst particles. The coating was performed by filling the channel system with a suspension of the catalyst in 2-propanol and subsequent removal of the organic solvent by heat treatment at 500 °C [24]. [Pg.295]

Fig. 1.20. Autothermal syngas generation by combining simultaneous autothermal reforming in an air/oxygen-fired fixed-bed reactor (ATR) and steam reforming in a gas-heated tubular fixed-bed reactor (GHR) [32, 33]. Fig. 1.20. Autothermal syngas generation by combining simultaneous autothermal reforming in an air/oxygen-fired fixed-bed reactor (ATR) and steam reforming in a gas-heated tubular fixed-bed reactor (GHR) [32, 33].
Selective hydrocarbon oxidation reactions are characterised by both high activation energies and heats of reaction. If the desired partial oxidation products are to be safeguarded and the catalyst integrity ensured it is essential that close temperature control be maintained. In spite of the obvious attractions of the fluid bed for this purpose, mechanical considerations normally dictate that a multi-tubular fixed-bed reactor, comprising small diameter tubes between 2-4 cms. diameter, be used. [Pg.527]

For analysis of distributed-parameter systems, such as a tubular fixed bed reactor, numerical simulation of periodic operation at various values of control parameters is typically applied. Asymptotic models for quasisteady and relaxed steady states are valuable instruments for a substantial simplification of the original distributed-parameter system. A method allowing for... [Pg.496]

Sasol Sasolburg, South Africa Initially coal, currently natural gas Fused Fe/K Precipitated Fe/K Precipitated Fe/K (spray dried) Circulating fluidised bed Multi-tubular fixed bed Slurry phase reactor 1955-ca. 1985 1955 1 1993 J 5 000... [Pg.454]

The objective of this work is to stress the importance of type III models, both in their two-dimensional version, proposed a decade ago (3>)>and in the recently proposed one-dimensional version (2). Although these models correctly represent the transfer phenomena in and between phases for tubular fixed-bed reactors, they have seldom been used up to now. Type II models have been included in this analysis because they have been used very frequently and it is of special importance to show that their responses may greatly deviate with respect to the response of type III models. [Pg.233]

Description The fresh paraffin feedstock is combined with paraffin recycle and internally generated steam. After preheating, the feed is sent to the reaction section. This section consists of an externally fired tubular fixed-bed reactor (Uhde reformer) connected in series with an adiabatic fixed-bed oxyreactor (secondary reformer type). In the reformer, the endothermic dehydrogenation reaction takes place over a proprietary, noble metal catalyst. [Pg.120]

Consider a tubular fixed-bed reactor accomplishing a highly exothermic gas-phase reaction. Assuming that axial dispersion can be neglected, the mass and energy balances can be written as follows and allow for radial gradients ... [Pg.325]

The aim of the preceding discussion on commercial reactors is to give a more detailed picture of each of the major types of industrial reactors batch, semibatch, CSTR, tubular, fixed-bed (packed-bed), and iiuidized-bed. Many variations aird modifications of these commercial reactors are in current use for further elaboration, refer to the detailed discussion of industrial reactors given by Walas. ... [Pg.29]

The FT process is well known and already applied on a large scale [9,10,11,12]. Currently, the two players that operate commercial Fischer-Tropsch plants are Shell and Sasol. In the Sasol and Shell plants gasification of coal and partial oxidation of natural gas, respectively, produce the syngas for the FT synthesis with well-defined compositions. Shell operates the SMDS (Shell Middle Distillate Synthesis) process in Bintulu, Malaysia, which produces heavy waxes with a cobalt catalyst in multi-tubular fixed bed reactors. Sasol in South Afirica uses iron catalysts and operates several types of reactors, of which the slurry bubble column reactor is the most versatile (i.e. applied in the Sasol Slurry Phase Distillate SSPD),... [Pg.491]

Ethylbenzene disproportionation was performed in a stainless-steel tubular fixed-bed reactor. Mordenites were evaluated at 150 and faujasites at 200°C at atmospheric pressure. Ethylbenzene vapour was mixed with helium and introduced into the reactor at a partial pressure of 1.33 kPa with a total flow rate of 1.81-h-i [3]. [Pg.295]

A tubular fixed bed reactor equipped with six independent heating zone was used to maintain an isothermality through out the reactor axis. Glass beads of comparable dimension were mixed with catalysts as diluent to avoid excessive heat generation and accumulation. Details of the flow schematics, data acquisition and system control design are given by Frycek (1934) and Megiris (1987). ... [Pg.341]


See other pages where Tubular fixed bed is mentioned: [Pg.165]    [Pg.81]    [Pg.518]    [Pg.277]    [Pg.491]    [Pg.347]    [Pg.172]    [Pg.20]    [Pg.417]    [Pg.81]    [Pg.749]    [Pg.59]    [Pg.77]    [Pg.565]    [Pg.19]    [Pg.32]    [Pg.282]    [Pg.64]    [Pg.896]    [Pg.507]   
See also in sourсe #XX -- [ Pg.460 ]




SEARCH



Modeling of a Multi-tubular Fixed Bed Fischer-Tropsch Reactor

Tubular fixed bed reactor

© 2024 chempedia.info