Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical vapor deposition reactor

Continuous-stirred tank reactor Chemical vapor deposition... [Pg.704]

The epitaxy reactor is a specialized variant of the tubular reactor in which gas-phase precursors are produced and transported to a heated surface where thin crystalline films and gaseous by-products are produced by further reaction on the surface. Similar to this chemical vapor deposition (CVE)) are physical vapor depositions (PVE)) and molecular beam generated deposits. Reactor details are critical to assuring uniform, impurity-free deposits and numerous designs have evolved (Fig. 22) (89). [Pg.523]

Fig. 22. Schematics of chemical vapor deposition epitaxial reactors (a) horizontal reactor, (b) vertical pedestal reactor, (c) multisubstrate rotating disk reactor, (d) barrel reactor, (e) pancake reactor, and multiple wafer-in-tube reactor (38). Fig. 22. Schematics of chemical vapor deposition epitaxial reactors (a) horizontal reactor, (b) vertical pedestal reactor, (c) multisubstrate rotating disk reactor, (d) barrel reactor, (e) pancake reactor, and multiple wafer-in-tube reactor (38).
Many semibatch reactions involve more than one phase and are thus classified as heterogeneous. Examples are aerobic fermentations, where oxygen is supplied continuously to a liquid substrate, and chemical vapor deposition reactors, where gaseous reactants are supplied continuously to a solid substrate. Typically, the overall reaction rate wiU be limited by the rate of interphase mass transfer. Such systems are treated using the methods of Chapters 10 and 11. Occasionally, the reaction will be kinetically limited so that the transferred component saturates the reaction phase. The system can then be treated as a batch reaction, with the concentration of the transferred component being dictated by its solubility. The early stages of a batch fermentation will behave in this fashion, but will shift to a mass transfer limitation as the cell mass and thus the oxygen demand increase. [Pg.65]

Application of Supercomputers To Model Fluid Itansport and Chemical Kinetics in Chemical Vapor Deposition Reactors... [Pg.334]

Figure 1. Schematic of the rotating>disk chemical vapor deposition reactor. Figure 1. Schematic of the rotating>disk chemical vapor deposition reactor.
Consider Equations (6-10) that represent the CVD reactor problem. This is a boundary value problem in which the dependent variables are velocities (u,V,W), temperature T, and mass fractions Y. The mathematical software is a stand-alone boundary value solver whose first application was to compute the structure of premixed flames.Subsequently, we have applied it to the simulation of well stirred reactors,and now chemical vapor deposition reactors. The user interface to the mathematical software requires that, given an estimate of the dependent variable vector, the user can return the residuals of the governing equations. That is, for arbitrary values of velocity, temperature, and mass fraction, by how much do the left hand sides of Equations (6-10) differ from zero ... [Pg.348]

Chemical vapor deposition (CVD) of carbon from propane is the main reaction in the fabrication of the C/C composites [1,2] and the C-SiC functionally graded material [3,4,5]. The carbon deposition rate from propane is high compared with those from other aliphatic hydrocarbons [4]. Propane is rapidly decomposed in the gas phase and various hydrocarbons are formed independently of the film growth in the CVD reactor. The propane concentration distribution is determined by the gas-phase kinetics. The gas-phase reaction model, in addition to the film growth reaction model, is required for the numerical simulation of the CVD reactor for designing and controlling purposes. Therefore, a compact gas-phase reaction model is preferred. The authors proposed the procedure to reduce an elementary reaction model consisting of hundreds of reactions to a compact model objectively [6]. In this study, the procedure is applied to propane pyrolysis for carbon CVD and a compact gas-phase reaction model is built by the proposed procedure and the kinetic parameters are determined from the experimental results. [Pg.217]

The radio-frequency glow-discharge method [30-34] has been the most used method in the study of a-C H films. In this chapter, it is referred to as RFPECVD (radio frequency plasma enhanced chemical vapor deposition). Film deposition by RFPECVD is usually performed in a parallel-plate reactor, as shown in Figure 1. The plasma discharge is established between an RF-powered electrode and the other one, which is maintained at ground potential. The hydrocarbon gas or vapor is fed at a controlled flow to the reactor, which is previously evacuated to background pressures below lO"" Torr. The RF power is fed to the substrate electrode... [Pg.222]

For illustrative purposes, the process of deposition of Si onto graphite is being used as an example. The 15 pm natural graphite precursors were introduced into the industrial size chemical vapor deposition reactor, where a thermal decomposition of silane (SiH4) into the silicon and hydrogen was taking place under inert gas in accordance with the equation (1) ... [Pg.337]

The multiwalled nanotubes as well as the herringbone type carbon nanofibers were synthesized in-house in a quartz glass fluidized bed reactor via chemical vapor deposition (CVD). The method is described in detail elsewhere.19 The platelet nanofibers, in contrast, were purchased from the company FutureCarbon GmbH (Bayreuth, Germany). [Pg.19]

Films at NASA GRC were deposited using homemade spray or aerosol-assisted chemical vapor deposition (AACVD) reactors to exploit the lower deposition temperature enabled by the simpler decomposition chemistry for the SSPs.6 9 AACVD is a simple and inexpensive process that offers the advantage of a uniform, large-area deposition, just like metal organic CVD (MOCVD), while also offering the low-temperature solution reservoir typical of spray pyrolysis methods. [Pg.160]

Optimization of Low-Pressure Chemical Vapor Deposition Reactor for the... [Pg.480]

EXAMPLE 14.5 OPTIMIZATION OF LOW-PRESSURE CHEMICAL VAPOR DEPOSITION REACTOR FOR THE DEPOSITION OF THIN FILMS... [Pg.500]

In the Development stage, detailed product design is carried out. This is the key step for the chemical vapor deposition of thin silicon films. As described in the next section, to obtain uniform thin films rapidly, it is desirable to optimize the design of the plasma-enhanced, chemical-vapor-deposition (PECVD) reactor. [Pg.293]

For epitaxial silicon wafers, product design focuses on optimizing the geometry of the plasma-enhanced, chemical-vapor-deposition (PECVD) reactor. To increase productivity, and maintain acceptable thickness uniformity, on the order of 5%, a simple optimization strategy locates a design that completes the deposition in 62 s. Then, for a standard manufacturing process, the economics are driven by the wafer costs, which are provided by a vendor at 206/wafer. At a sales price of 260/epitaxial wafer, the investor s rate of return is 18.3% and the return on investment is 25.3%. [Pg.310]


See other pages where Chemical vapor deposition reactor is mentioned: [Pg.217]    [Pg.118]    [Pg.118]    [Pg.514]    [Pg.55]    [Pg.368]    [Pg.66]    [Pg.319]    [Pg.451]    [Pg.12]    [Pg.334]    [Pg.334]    [Pg.350]    [Pg.353]    [Pg.356]    [Pg.370]    [Pg.1]    [Pg.89]    [Pg.297]    [Pg.399]    [Pg.78]    [Pg.310]    [Pg.569]    [Pg.16]    [Pg.500]    [Pg.16]    [Pg.289]    [Pg.295]    [Pg.15]   


SEARCH



Chemical reactors

Chemical vapor deposition

Chemical vapor deposition cold-wall reactors

Chemical vapor deposition reactor analysis

Chemical vapor deposition reactor geometry

Chemical vapor deposition reactors devices

Chemical vapor deposition thermal reactor

Deposition reactor

Reactors chemical reactor

Reactors for chemical vapor deposition

© 2024 chempedia.info