Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymeric quaternary ammonium salts

Methyl vinyl ketone 2 tends to polymerize, especially in the presence of a strong base the yield of annulation product is therefore often low. A methyl vinyl ketone precursor, e.g. 6, is often employed, from which the Michael acceptor 2 is generated in situ, upon treatment with a base. The quaternary ammonium salt 6 can be obtained by reaction of the tertiary amine 5, which in turn is prepared from acetone, formaldehyde and diethylamine in a Mannich reaction. [Pg.241]

A new ionic polymeric polycarbamate was synthesized after steps of polyurethane chemistry using 3-iso-cyanatemethyl-3,5,5-trimethylcyclohexyl isocyanate, 2,5-dimethyl-2,5-dihydroperoxyhexane, 1,6-butanediol, 2,4-tolylenediisocyanate, and N,N -bis(j3-Hydroxy-ethyOpiperazine [27]. Modification of the nitrogen of the piperazine ring into quaternary ammonium salt by treatment with methyliodide gave the MPI high electroconductivity. [Pg.759]

Normally, persulfate (41) can only be used to initiate polymerization in aqueous or part aqueous (emulsion) media because it has poor solubility in most organic solvents and monomers. However, it has been reported that polymerizations in organic solvent may be initiated by crown ether complexes of potassium persulfate.234 237 Quaternary ammonium persulfates can also serve as useful initiators in organic media. 4 The rates of decomposition of both the crown ether complexes and the quaternary ammonium salts appear dramatically... [Pg.94]

Trimerization to isocyanurates (Scheme 4.14) is commonly used as a method for modifying the physical properties of both raw materials and polymeric products. For example, trimerization of aliphatic isocyanates is used to increase monomer functionality and reduce volatility (Section 4.2.2). This is especially important in raw materials for coatings applications where higher functionality is needed for crosslinking and decreased volatility is essential to reduce VOCs. Another application is rigid isocyanurate foams for insulation and structural support (Section 4.1.1) where trimerization is utilized to increase thermal stability and reduce combustibility and smoke formation. Effective trimer catalysts include potassium salts of carboxylic acids and quaternary ammonium salts for aliphatic isocyanates and Mannich bases for aromatic isocyanates. [Pg.226]

Fig. 10.8 A where the R substituents are alkyl or heterocyclic radicals to give compounds such as cetyltrimethylammonium bromide (cetrimide), cetylpyridinium chloride and benzalkonium chloride. Inspection of the stmctures of these compounds (Fig. 10.8B) indicates the requirement for good antimicrobial activily of having a chain length in the range Cg to Cig in at least one of the R substituents. In the pyridinium compounds (Fig. 10.8C) three of the four covalent links may be satisfied by the nitrogen in a pyridine ring. Polymeric quaternary ammonium salts such as polyquatemium 1 are finding increasing use as preservatives. Fig. 10.8 A where the R substituents are alkyl or heterocyclic radicals to give compounds such as cetyltrimethylammonium bromide (cetrimide), cetylpyridinium chloride and benzalkonium chloride. Inspection of the stmctures of these compounds (Fig. 10.8B) indicates the requirement for good antimicrobial activily of having a chain length in the range Cg to Cig in at least one of the R substituents. In the pyridinium compounds (Fig. 10.8C) three of the four covalent links may be satisfied by the nitrogen in a pyridine ring. Polymeric quaternary ammonium salts such as polyquatemium 1 are finding increasing use as preservatives.
Quaternary ammonium salts of 1-acryloy 1-4-methyl piperazine can be prepared by methylation with methyl chloride and dimethyl sulfate. These monomers can be polymerized by means of radical polymerization, either alone or with a comonomer [617]. A useful comonomer with appropriate monomer reactivity ratios is acrylamide. [Pg.337]

Slow, except in presence of alkalis products formed are complex polymeric quaternary ammonium salts dimerizes fairly rapidly in water. [Pg.30]

Aryl vinyl ketones are produced thermally from the corresponding quaternary ammonium salts via Hofmann elimination. However, the conjugated ketones are heat-sensitive and polymerization is difficult to avoid. Traditional preparations afforded only moderate yields. Microwave conditions were established for Hofmann eliminations, performed essentially quantitatively, by batch or continuous processes. [Pg.43]

Quaternary ammonium salts (QAS) are anion exchangers used in solvent polymeric membranes. Variation of substituents at the nitrogen atom is an option for tuning QAS... [Pg.123]

The dehydrohalogenation of 1- or 2-haloalkanes, in particular of l-bromo-2-phenylethane, has been studied in considerable detail [1-9]. Less active haloalkanes react only in the presence of specific quaternary ammonium salts and frequently require stoichiometric amounts of the catalyst, particularly when Triton B is used [ 1, 2]. Elimination follows zero order kinetics [7] and can take place in the absence of base, for example, styrene, equivalent in concentration to that of the added catalyst, is obtained when 1-bromo-2-phenylethane is heated at 100°C with tetra-n-butyl-ammonium bromide [8], The reaction is reversible and 1-bromo-l-phenylethane is detected at 145°C [8]. From this evidence it is postulated that the elimination follows a reverse transfer mechanism (see Chapter 1) [5]. The liquidrliquid two-phase p-elimination from 1-bromo-2-phenylethanes is low yielding and extremely slow, compared with the PEG-catalysed reaction [4]. In contrast, solid potassium hydroxide and tetra-n-butylammonium bromide in f-butanol effects a 73% conversion in 24 hours or, in the absence of a solvent, over 4 hours [3] extended reaction times lead to polymerization of the resulting styrene. [Pg.391]

The only cationic surfactant (Fig. 23) found in any quantity in the environment is ditallow dimethylammonium chloride (DTDMAC), which is mainly the quaternary ammonium salt distearyldimethylammonium chloride (DSDMAC). The organic chemistry and characterization of cationic surfactants has been reported and reviewed [330 - 332 ]. The different types of cationic surfactants are fatty acid amides [333], amidoamine [334], imidazoline [335], petroleum feed stock derived surfactants [336], nitrile-derived surfactants [337], aromatic and cyclic surfactants [338], non-nitrogen containing compounds [339], polymeric cationic surfactants [340], and amine oxides [341]. [Pg.51]

Rasmussen and co-workers. Chapter 10, have shown that many free-radical polymerizations can be conducted in two-phase systems using potassium persulfate and either crown ethers or quaternary ammonium salts as initiators. When transferred to the organic phase persulfate performs far more efficiently as an initiator than conventional materials such as azobisisobutyronitrile or benzoyl peroxide. In vinyl polymerizations using PTC-persulfate initiation one can exercise precise control over reaction rates, even at low temperatures. Mechanistic aspects of these complicated systems have been worked out for this highly useful and economical method of initiation of free-radical polymerizations. [Pg.5]

In 1981 we reported (2, 3) the first examples of free radical polymerizations under phase transfer conditions. Utilizing potassium persulfate and a phase transfer catalyst (e.g. a crown ether or quaternary ammonium salt), we found the solution polymerization of acrylic monomers to be much more facile than when common organic-soluble initiators were used. Somewhat earlier, Voronkov and coworkers had reported (4) that the 1 2 potassium persulfate/18-crown-6 complex could be used to polymerize styrene and methyl methacrylate in methanol. These relatively inefficient polymerizations were apparently conducted under homogeneous conditions, although exact details were somewhat unclear. We subsequently described (5) the... [Pg.116]

Polymerization of butyl acrylate was also studied by us in ethyl acetate/water two phase systems (3) using potassium persulfate/quaternary ammonium salts as the initiator system. Under these conditions (a minimum amount of water was used to dissolve the persulfate), it was found that symmetrical quat salts were more efficient than surfactant type quat salts. Also, the more lipophilic quat salts were more efficient. These results prompted us to propose formation of an organic-soluble quaternary ammonium persulfate via typical phase transfer processes. [Pg.118]

Lu and coworkers have synthesized a related bifunctional cobalt(lll) salen catalyst similar to that seen in Fig. 11 that contains an attached quaternary ammonium salt (Fig. 13) [36]. This catalyst was found to be very effective at copolymerizing propylene oxide and CO2. For example, in a reaction carried out at 90°C and 2.5 MPa pressure, a high molecular weight poly(propylene carbonate) = 59,000 and PDI = 1.22) was obtained with only 6% propylene carbonate byproduct. For a polymerization process performed under these reaction conditions for 0.5 h, a TOF (turnover frequency) of 5,160 h was reported. For comparative purposes, the best TOF observed for a binary catalyst system of (salen)CoX (where X is 2,4-dinitrophenolate) onium salt or base for the copolymerization of propylene oxide and CO2 at 25°C was 400-500 h for a process performed at 1.5 MPa pressure [21, 37]. On the other hand, employing catalysts of the type shown in Fig. 12, TOFs as high as 13,000 h with >99% selectivity for copolymers withMn 170,000 were obtained at 75°C and 2.0 MPa pressure [35]. The cobalt catalyst in Fig. 13 has also been shown to be effective for selective copolymer formation from styrene oxide and carbon dioxide [38]. [Pg.14]

Polymer phase-transfer catalysts (also referred to as triphase catalysts) are useful in bringing about reaction between a water-soluble reactant and a water-insoluble reactant [Akelah and Sherrington, 1983 Ford and Tomoi, 1984 Regen, 1979 Tomoi and Ford, 1988], Polymer phase transfer catalysts (usually insoluble) act as the meeting place for two immiscible reactants. For example, the reaction between sodium cyanide (aqueous phase) and 1-bromooctane (organic phase) proceeds at an accelerated rate in the presence of polymeric quaternary ammonium salts such as XXXIX [Regen, 1975, 1976]. Besides the ammonium salts, polymeric phosphonium salts, crown ethers and cryptates, polyethylene oxide), and quaternized polyethylenimine have been studied as phase-transfer catalysts [Hirao et al., 1978 Ishiwatari et al., 1980 Molinari et al., 1977 Tundo, 1978]. [Pg.770]

Quaternary ammonium salts and salts of alkyl naphthalene sulfonic acid were some of the first compounds to be used effectively as fuel demulsifiers and dehazers. Today, a wide range of monomeric and polymeric demulsifiers and dehazers exist. [Pg.146]

Addition of a quaternary ammonium salt to a cobalt-salen catalyst drastically enhances the catalytic performance for the co-polymerization of PO with GO2. Lu and Wang investigated the binary catalyst system that consisted of a cobalt-salen complex and a tetrabutylammonium salt (Table 6). This binary catalyst system is able to promote... [Pg.614]

Free radical polymerizations may also be used to synthesize a host of cationic polyelectrolytes. Diallyl quaternary ammonium salts such as dimethyl-diallylammonium chloride, diallyldiethylammonium chloride, and diallylmethyl b-propionamido chloride are an interesting class of monomers which will... [Pg.5]

Other investigators have considered polyamines as polymeric drugs. Panarin and coworkers [467] studied the immunogenic and antibacterical activity of water-soluble cationic polyelectrolytes based on vinylamine amino-alkyl methacrylate quaternary ammonium salts. Macrophages were successfully activated in vivo to become cytotoxic to tumor cells in vitro, and cytotoxic or... [Pg.38]

PBAA and PBAN. Synthesis. PBAA and PBAN are prepared by an emulsion polymerization process initiated by a free radical mechanism. Using a quaternary ammonium salt as the emulsifier and azobisisobutyro-nitrile as the initiator, the reaction for the synthesis of PBAN proceeds according to ... [Pg.133]

RESINS (Acetal). These are thermoplastic resins, obtainable both as homopolymers and copolymers, and produced principally from formaldehyde or formaldehyde derivative. Acetal resins have the highest fatigue endurance of commercial thermoplastics. A variety of ionic initiators, such as tertiary amines and quaternary ammonium salts, are used to effect polymerization of formaldehyde. Chain transfer, shown by the following reactions, controls the molecular weight of resulting resins ... [Pg.1436]

The studies of the stability of heparin-amine complexes demonstrated that the stability of this class of polymeric materials might be improved by choosing the right amine. Quaternary ammonium salts were shown to bind heparin stronger than primary, secondary, and tertiary amines, while amines containing alicyclic or aromatic fragments are more efficient than the aliphatic ones. Of the quaternary ammonium... [Pg.100]

For reducing cholesterol blood levels were used the polymeric compounds which can to bind bile acids such as 1) "Acryloid CQ" and "Acrysol CQ", a linear acrylic type quaternary ammonium salt having a molecular weight of the order of about 2,000,000, made by Rohm and Haas Company,... [Pg.1007]

Higher homologs of PEI can be obtained by cationic ring-opening polymerization of azetidine monomers21). Polymers of this kind can also be N-methylated as previously described in the case of PEI. The cationic polymerization of N-substituted azetidines may give rise to poly(tertiary amine)s. Linear poly(tertiary amine)s have been obtained by selective dealkylation of poly(quaternary ammonium salt)s22). [Pg.61]


See other pages where Polymeric quaternary ammonium salts is mentioned: [Pg.44]    [Pg.44]    [Pg.322]    [Pg.180]    [Pg.76]    [Pg.877]    [Pg.878]    [Pg.878]    [Pg.132]    [Pg.25]    [Pg.69]    [Pg.149]    [Pg.525]    [Pg.60]    [Pg.322]    [Pg.617]    [Pg.7]    [Pg.46]    [Pg.276]    [Pg.68]    [Pg.316]    [Pg.164]    [Pg.119]    [Pg.276]   
See also in sourсe #XX -- [ Pg.181 , Pg.258 ]




SEARCH



Polymeric quaternary ammonium

Polymeric salts

Quaternary ammonium salts

Quaternary salts

© 2024 chempedia.info