Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Purely excessive

Even in the best case, some racemic product is produced and must be separated out. This separation is easy or hard, depending on the nature of the racemate. If the racemic modification has a different crystalline form to that of the pure d or l, then separation of the pure excess enantiomer will be inefficient. If one achieves a 90% ee value, then it is quite possible to get out only 75-80% pure enantiomer. With lower ee values, the losses become prohibitive. For such a system, a catalyst of very high efficiency must be used. Unfortunately, most compounds are of this type their racemic modifications do not crystallize as pure d- or l-forms. If, on the other hand, the racemic modification is a conglomerate or an equal mix of d- and L-crystals, then recovery of the excess the L-form can be achieved with no losses. Since the l- and D,L-forms are not independently soluble, a 90% ee value easily gives a 90% recovery of pure isomer. In our L-dopa process, the intermediate is just such a conglomerate and separations are efficient. This lucky break was most welcome. If one thinks back, ours was the same luck that Pasteur encountered in his classical tartaric acid separations, 150 years ago. [Pg.29]

However, if the liquid solution contains a noncondensable component, the normalization shown in Equation (13) cannot be applied to that component since a pure, supercritical liquid is a physical impossibility. Sometimes it is convenient to introduce the concept of a pure, hypothetical supercritical liquid and to evaluate its properties by extrapolation provided that the component in question is not excessively above its critical temperature, this concept is useful, as discussed later. We refer to those hypothetical liquids as condensable components whenever they follow the convention of Equation (13). However, for a highly supercritical component (e.g., H2 or N2 at room temperature) the concept of a hypothetical liquid is of little use since the extrapolation of pure-liquid properties in this case is so excessive as to lose physical significance. [Pg.18]

This chapter presents quantitative methods for calculation of enthalpies of vapor-phase and liquid-phase mixtures. These methods rely primarily on pure-component data, in particular ideal-vapor heat capacities and vapor-pressure data, both as functions of temperature. Vapor-phase corrections for nonideality are usually relatively small. Liquid-phase excess enthalpies are also usually not important. As indicated in Chapter 4, for mixtures containing noncondensable components, we restrict attention to liquid solutions which are dilute with respect to all noncondensable components. [Pg.93]

Surface heterogeneity may merely be a reflection of different types of chemisorption and chemisorption sites, as in the examples of Figs. XVIII-9 and XVIII-10. The presence of various crystal planes, as in powders, leads to heterogeneous adsorption behavior the effect may vary with particle size, as in the case of O2 on Pd [107]. Heterogeneity may be deliberate many catalysts consist of combinations of active surfaces, such as bimetallic alloys. In this last case, the surface properties may be intermediate between those of the pure metals (but one component may be in surface excess as with any solution) or they may be distinctly different. In this last case, one speaks of various effects ensemble, dilution, ligand, and kinetic (see Ref. 108 for details). [Pg.700]

Anotlier simple way to obtain the molecular weight consists of measuring tire viscosity of a dilute polymer solution. The intrinsic viscosity [q] is defined as tire excess viscosity of tire solution compared to tliat of tire pure solvent at tire vanishing weight concentration of tire polymer [40] ... [Pg.2530]

Nitrogen trifluoride and trichloride can both be prepared as pure substances by the action of excess halogen on ammonia, a copper catalyst being necessary for the formation of nitrogen trifluoride. [Pg.249]

Many of these sulphides occur naturally, for example iron(ll) sulphide, FeS (magnetic pyrites), and antimony(III) sulphide, Sb S, (stibnite). They can usually be prepared by the direct combination of the elements, effected by heating, but this rarely produces a pure stoichiometric compound and the product often contains a slight excess of the metal, or of sulphur. [Pg.288]

Decolorisation by Animal Charcoal. It sometimes hap pens (particularly with aromatic and heterocyclic compounds) that a crude product may contain a coloured impurity, which on recrystallisation dissolves in the boiling solvent, but is then partly occluded by crystals as they form and grow in the cooling solution. Sometimes a very tenacious occlusion may thus occur, and repeated and very wasteful recrystallisation may be necessary to eliminate the impurity. Moreover, the amount of the impurity present may be so small that the melting-point and analytical values of the compound are not sensibly affected, yet the appearance of the sample is ruined. Such impurities can usually be readily removed by boiling the substance in solution with a small quantity of finely powdered animal charcoal for a short time, and then filtering the solution while hot. The animal charcoal adsorbs the coloured impurity, and the filtrate is usually almost free from extraneous colour and deposits therefore pure crystals. This decolorisation by animal charcoal occurs most readily in aqueous solution, but can be performed in almost any organic solvent. Care should be taken not to use an excessive quantity... [Pg.21]

For purification, transfer the acid to a 150 ml. flask containing 60 ml. of water, boil the mixture under reflux, and then add acetic acid in 5 ml. portions down the condenser until almost all the solid has dissolved avoid an excess of acetic acid by ensuring that the solvent action of each addition is complete before the next portion is added. A small suspension of insoluble impurity may remain. Add 2 g. of animal charcoal, boil the solution again for 10-15 minutes, and then filter it through a preheated Buchner funnel. Cool and stir the filtrate, which will deposit pale cream-coloured crystals of the acid. Collect as before and if necessary repeat the recrystallisation. Yield of pure acid, 9 g. m.p. 227-229°. [Pg.201]

Unless all the excess of ammonia has been driven off in the preparation of the neutral salt, the result obtained on adding ferric chloride will be misleading owing to the precipitation of ferric hydroxide. If this is suspected, the tests should be repeated using an aqueous solution of the pure sodium salts of these acids for comparison. [Pg.333]

B) Benzoyl derivatives. Most amino-acids can be benzoyl-ated when their solutions in 10% aqueous sodium hydroxide are shaken with a small excess of benzoyl chloride until a clear solution is obtained (Schotten-Baumann reaction, p. 243). Acidification of the solution then precipitates the benzoyl derivative and the excess of benzoic acid, and the mixture must be filtered off, washed with water, and recrystallised (usually from ethanol) to obtain the pure derivative. (M.ps., p. 555 )... [Pg.382]

Pure pyridine may be prepared from technical coal-tar pyridine in the following manner. The technical pyridine is first dried over solid sodium hydroxide, distilled through an efficient fractionating column, and the fraction, b.p. 114 116° collected. Four hundred ml. of the redistilled p)rridine are added to a reagent prepared by dissolving 340 g. of anhydrous zinc chloride in a mixture of 210 ml. of concentrated hydrochloric acid and 1 litre of absolute ethyl alcohol. A crystalline precipitate of an addition compound (probable composition 2C5H5N,ZnCl2,HCl ) separates and some heat is evolved. When cold, this is collected by suction filtration and washed with a little absolute ethyl alcohol. The yield is about 680 g. It is recrystaUised from absolute ethyl alcohol to a constant m.p. (151-8°). The base is liberated by the addition of excess of concentrated... [Pg.175]

Formamide. Commercial formamide may contain excess of formic acid. It is purified by passing ammonia gas into the mixture until a slight alkaline reaction is obtained. The ammonium formate thus formed is precipitated by the addition of acetone the filtrate, after drying over anhydrous magnesium sulphate, is distilled under reduced pressure. Pure formamide has b.p. IO571I mm. [Pg.179]

In a 1500 ml. round-bottomed flask, carrying a reflux condenser, place 100 g. of pure cydohexanol, 250 ml. of concentrated hydrochloric acid and 80 g. of anhydrous calcium chloride heat the mixture on a boiling water bath for 10 hours with occasional shaking (1). Some hydrogen chloride is evolved, consequently the preparation should be conducted in the fume cupboard. Separate the upper layer from the cold reaction product, wash it successively with saturated salt solution, saturated sodium bicarbonate solution, saturated salt solution, and dry the crude cycZohexyl chloride with excess of anhydrous calcium chloride for at least 24 hours. Distil from a 150 ml. Claisen flask with fractionating side arm, and collect the pure product at 141-5-142-5°. The yield is 90 g. [Pg.275]

Di-n-amyl ether. Use 50 g. (61 5 ml.) of n-amyl alcohol (b.p. 136-137°) and 7 g. (4 ml.) of concentrated sulphuric acid. The calculated volume of water (5 ml.) is collected when the temperature inside the flask rises to 157° (after 90 minutes). Steam distil the reaction mixture, separate the upper layer of the distillate and dry it with anhydrous potassium carbonate. Distil from a 50 ml. Claisen flask and collect the fractions of boiling point (i) 145-175° (13 g.), (ii) 175-185° (8 g.) and (iii) 185-190° (largely 185-185-5°) (13 g.). Combine fractions (i) and (u), reflux for 1 hour in a small flask with 3 g. of sodium, and distil from the sodium amyloxide and excess of sodium this yields 9 5 g. of fairly pure n-amyl ether (iv). The total yield is therefore 22 - 5 g. A perfectly pure product, b.p. 184 185°, is obtained by further distillation from a Little sodium. [Pg.313]

Anilides. Dilute the acid chloride with 5 ml. of pure ether (or benzene), and add a solution of 2 g. of pure aniline in 15-20 ml. of the same solvent until the odour of the acid chloride has disappeared excess of aniline is not harmful. Shake with excess of dilute hydrochloric acid to remove aniline and its salts, wash the ethereal (or benzene) layer with 3-5 ml. of water, and evaporate the solvent [CAUTION ] Recrystallise the anilide from water, dilute alcohol or benzene - light petroleum (b.p. 60-80°). [Pg.361]

Add 4 0 g. (4 0 ml.) of pure anihne dropwise to a cold solution of ethyl magnesium bromide (or iodide) prepared from 1 Og. of magnesium, 5 0 g. (3-5 ml.) of ethyl bromide (or the equivalent quantity of ethyl iodide), and 30 ml. of pure, sodium-dried ether. When the vigorous evolution of ethane has ceased, introduce 0 02 mol of the ester in 10 ml. of anhydrous ether, and warm the mixture on a water bath for 10 minutes cool. Add dilute hydrochloric acid to dissolve the magnesium compounds and excess of aniline. Separate the ethereal layer, dry it with anhydrous magnesium sulphate and evaporate the ether. Recrystallise the residual anihde, which is obtained in almost quantitative yield, from dilute alcohol or other suitable solvent. [Pg.394]


See other pages where Purely excessive is mentioned: [Pg.169]    [Pg.171]    [Pg.624]    [Pg.243]    [Pg.605]    [Pg.169]    [Pg.171]    [Pg.624]    [Pg.243]    [Pg.605]    [Pg.148]    [Pg.283]    [Pg.221]    [Pg.301]    [Pg.60]    [Pg.77]    [Pg.140]    [Pg.145]    [Pg.444]    [Pg.524]    [Pg.2930]    [Pg.118]    [Pg.150]    [Pg.167]    [Pg.399]    [Pg.446]    [Pg.449]    [Pg.483]    [Pg.11]    [Pg.172]    [Pg.177]    [Pg.177]    [Pg.240]    [Pg.314]    [Pg.361]    [Pg.374]    [Pg.385]    [Pg.426]   
See also in sourсe #XX -- [ Pg.176 ]




SEARCH



Thermotropic phase transitions of pure lipids in excess water

© 2024 chempedia.info